Tel/tronix[®]

Arbitrary Function Generators

AFG31000 Series Datasheet

The Tektronix AFG31000 Series is a high-performance AFG with built-in arbitrary waveform generation, real-time waveform monitoring, and the largest touchscreen on the market. Providing advanced waveform generation and programming capabilities, waveform verification, and a modern touch-screen interface, the new AFG31000 is sure to delight and simplify the job of every researcher and engineer.

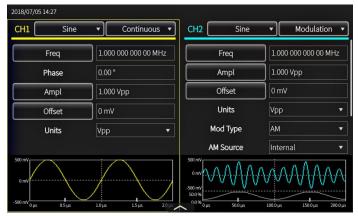
Key performance specifications

- 1 or 2 channel models
- Output amplitude range 1 mV_{P-P} to 10 V_{P-P} into 50 Ω loads
- · Basic (AFG) mode:
 - 25 MHz, 50 MHz, 100 MHz, 150 MHz, or 250 MHz sine waveforms
 - 250 MSa/s, 1 GSa/s or 2 GSa/s sample rates
 - 14-bit vertical resolution
 - Built-in waveforms include sine, square, ramp, pulse, noise, and other frequently used waveforms
 - Sweep, Burst, and Modulation modes (AM, FM, PM, FSK, and PWM)
- Advanced (Sequence) mode:
 - Continuous mode (optional Sequence, Triggered and Gated modes)
 - 16 Mpts arbitrary waveform memory on each channel (128 Mpts optional)
 - Up to 256 steps in sequence mode with loop, jump and wait events
 - Variable sampling clock 1 µSa/s to 2 GSa/s

Key features

- Patented InstaView[™] technology enables engineers to see the actual waveform at the Device Under Test (DUT) in real time, without the need of an oscilloscope and probe, eliminating the uncertainty caused by mismatched impedance
- Sequencing option adds the ability to program long, complex waveforms with up to 256 steps
- The 9-inch capacitive touch screen works like a smart phone and has short-cuts to frequently used settings
- Built-in ArbBuilder lets you create and edit arbitrary waveforms on the instrument, eliminating the need to connect to a PC
- Outputs are protected from over voltage and current to minimize potential instrument damage
- Compatible with TekBench[™] software to help students set up, control, and analyze test results in the lab

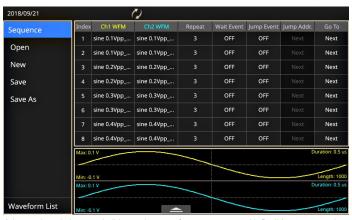
Applications


- Advanced research
- Clock and system synchronization
- Replication of real world signals
- Component and circuit characterization and validation
- Embedded circuit design and test
- General purpose signal generation

Basic and Advanced Modes

The AFG31000 series is the industry's first arbitrary function generator with full function Basic (AFG) and Advanced (Sequence) modes.

In Basic mode, the AFG31000 generates traditional functions and arbitrary waveforms. The touchscreen and front-panel controls make it simple to set up.

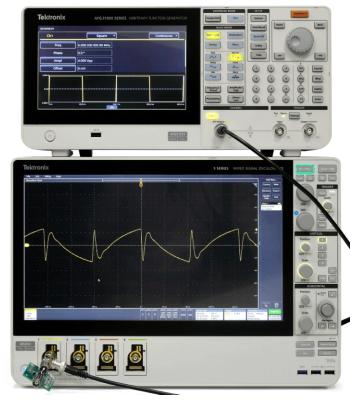

Basic mode lets you change frequency without the need to worry about waveform length and sample rate. This feature is useful in analog designs that characterize filter/amplifier frequency responses or in digital designs where clock rates change frequently.

Key settings are visible at a glance, and are easy to adjust using touch, numeric keypad, or rotary controls

New with the AFG31000, Advanced mode provides the ability to generate multiple waveforms with complex timing. In this mode, you can compose a list (or a sequence) of 1 to 256 waveforms, with total waveform length up to 16 Mpts/ch (128 Mpts/ch optional) and define the ouput sequence of these waveforms. Repeat, go-to, wait, jump, and triggered events are all supported and the large memory provides space to store many waveforms or long waveforms.

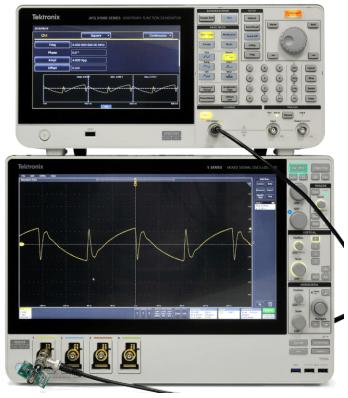
This feature is very useful in applications where many test cases need to be performed sequentially. Instead of loading the test cases one by one, you can put all of them in a sequence and load at one time, switching from one to another seamlessly to greatly improve the test efficiency.

Advanced mode lets you build complex waveform sequences with flexible step controls



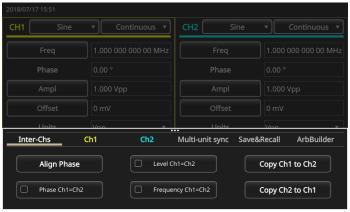
Sequenced sine waveforms with different frequency and amplitude.

Additionally, Advanced mode uses variable sample rate technology. Every sample in a waveform is output once and only once in each cycle, synchronized to the sample rate. Since there is no skipping or repetition, all details in the waveforms are kept. This feature is very useful for applications in which signal fidelity is extremely critical, such as IQ modulation and pulse train generation.


InstaView[™] technology shows the actual waveform at the DUT

Most waveform generators assume they are driving a 50 Ω impedance. However, most devices under test do not have a 50 Ω impedance. This mismatch results in an inconsistency between the waveform as set on the AFG and the signal at the DUT.

With InstaView turned off, the AFG31000 works like a traditional function generator. Due to an impedance mismatch, the AFG display shows a different waveform from the one observed at the DUT.


With the patented InstaView [™] technology, the AFG31000 Series can display the actual waveform at the DUT, instead of just the nominal waveform as set on the AFG. The waveform displayed on the AFG instantly responds to changes in frequency, amplitude, waveform shape, and impedance changes at the DUT. InstaView helps eliminate the uncertainty and measurement risk caused by impedance mismatches, without requiring additional cables, instruments, or effort.

With InstaView turned on, the AFG31000 shows the waveform as observed at the DUT.

A large touch screen and smart user interface

The large 9-inch capacitive touch screen displays all related settings and parameters on a single screen. Similar to smart devices, you can tap or swipe to easily select, browse, locate and change settings and parameters. Frequently-used functions are immediately accessible. Familiar buttons and rotary knob controls are available for more traditional navigation.

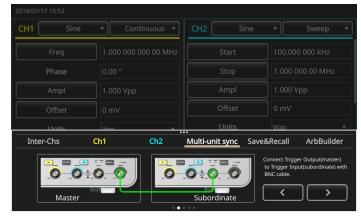
Frequently used settings are easy to access from the swipe-up menu

Built-in ArbBuilder tool makes creating and editing arbitrary waveforms easier than ever

In the past, you needed a PC with waveform editing software to create or edit your arbitrary waveforms. The waveform would then need to be downloaded to the AFG using either a USB stick or a data cable connection. The process was time-consuming, especially when waveforms required frequent changes.

ArbBuilder is a built-in application on the AFG31000 series that lets you create and edit your arbitrary waveforms directly on the generator. You can create arbitrary waveforms with the Equation Editor tool or start from a library of standard templates. Thanks to the large capacitive touch screen, you can drag, pinch and zoom to get the detail you need.

You can quickly replicate real-world waveforms captured with oscilloscopes or created by third-party software by loading CSV format data files directly into ArbBuilder from a USB memory stick.



Creating an arbitrary waveform using the easy touch screen interface

Simplified multi-unit synchronization

Most applications need one or two channels of output, but some applications require more channels. For example, in order to simulate 3-phase power signals, engineers often need to synchronize three 2-channel generators; one for the voltage and current on each phase. To do this used to be time-consuming, as it required many cable connections between the AFG units, and making changes in deep branches of the menu trees on all instruments.

The AFG31000 simplifies this process with an onscreen wizard that leads you through the process of making cable connections and configuring settings to synchronize multiple generators.

An on-screen wizard guides you through the process of multiple-unit synchronization

Upgradability protects your investment

The AFG31000 provides upgrade options for bandwidth, memory extension, and sequence mode support. These options can be installed at the factory or at any time after purchase. This upgradability helps to reduce the product ownership threshold. And when your test requirements change, you can purchase and install upgrade software licenses to add higher performance features. Upgrades eliminate the concern about the return on investment during the instrument lifetime.

Specifications

All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.

Model overview

Model	Sine frequency range	Number of channels
AFG31021	25 MHz	1
AFG31051	50 MHz	
AFG31101	100 MHz	
AFG31151	150 MHz	
AFG31251	250 MHz	
AFG31022	25 MHz	2
AFG31052	50 MHz	
AFG31102	100 MHz	
AFG31152	150 MHz	
AFG31252	250 MHz	

Output characteristics

A	1	24.	I .
Am	рı	ITU	lae

	AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
Range (into 50 Ω)	\leq 60 MHz: 1 mV _{P-P} to 10 V _{P-P} > 60 MHz to \leq 80 MHz: 1 mV _{P-P} to 8 V _{P-P} > 80 MHz to \leq 100 MHz: 1 mV _{P-P} to 6 V _{P-P}		\leq 200 MHz: 1 mV _{P.P} to 5 V _{P.P} > 200 MHz to \leq 250 MHz: 1 mV _{P.P} to 4 V _{P.P}		
Range (into open circuit or High-Z)	\leq 60 MHz: 2 mV _{P-P} to 20 V _{P-P} > 60 MHz to \leq 80 MHz: 2 mV _{P-P} to 16 V _{P-P} > 80 MHz to \leq 100 MHz: 2 mV _{P-P} to 12 V _{P-P}		\leq 200 MHz: 2 mV _{P-P} > 200 MHz to \leq 250 8 V _{P-P}		
Accuracy	\pm (1% of setting +1 mV _{P-P}) (1 kHz sine, 0 V offset, amplitude > 1 mV _{P-P})				
Resolution	$0.1~\text{mV}_{\text{P-P}},0.1~\text{mV}_{\text{RMS}},1~\text{mV},0.1~\text{dBm or 4 digits}$				
Units	Vpp, Vrms (excluding Arb and Noise), dBm (sine wave only), Volt (High Level and Low Level)				

\sim			
()	77	·c	ום

	AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
Range (into 50 Ω)	\pm (5 V _{PK} - Amplitude _{P-P} \div 2)		±(2.5 V _{PK} - Amplitude _{P-P} ÷ 2)		
Range (into open circuit or High-Z)	\pm (10 V _{PK} - Amplitude _{P.P} \div 2)		±(5 V _{PK} - Amplitude _F	_{P-P} ÷ 2)	
Accuracy	± (1% of setting +1 mV + 0.5% of Amplitude (V _{P-P}))				
Resolution	1 mV or 4 digits				

Output impedance	50 Ω
Load impedance setting	Selectable: 50 Ω , 1 Ω to 10.0 k Ω , High Z (Adjusts displayed amplitude according to selected load impedance)
Isolation	42 Vpk maximum to earth ground
Short-circuit protection	Signal outputs are robust against permanent shorts against floating ground
Overcurrent protection	When incoming current is greater than 250 mA, the output channels are protected with relays that disconnect the AFG from the device under test. Connection can be resumed by user after removing the incoming current

General characteristics - Basic mode

Basic (AFG)

Run modes Continuous, Modulation, Sweep and Burst

Standard waveforms Sine, Square, Pulse, Ramp, More (Noise, DC,Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine)

Arbitrary waveforms Sampling clock: 250 MSa/s, 1 GSa/s or 2 GSa/s (model and waveform length apply)

Vertical resolution: 14 bits

Waveform length: 2 to 131,072 points

Sine

Frequency range

	AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
Continuous mode	1 µHz to 25 MHz	1 µHz to 50 MHz	1 µHz to 100 MHz	1 µHz to 150 MHz	1 µHz to 250 MHz
Burst mode	1 µHz to 12.5 MHz	1 μHz to 25 MHz	1 μHz to 50 MHz	1 μHz to 75 MHz	1 µHz to 125 MHz

Effective maximum frequency out

AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
25 MHz	50 MHz	100 MHz	150 MHz	250 MHz

Amplitude flatness (1 V_{P-P} , relative to 1 kHz)

Frequency range	AFG31021, AFG31022, AFG31051, AFG31052, AFG31101, AFG31102	AFG31151, AFG31152, AFG31251, AFG31252
< 5 MHz	±0.2 dB	±0.2dB
≥ 5 MHz to 25 MHz		±0.3 dB
≥ 5 MHz to 100 MHz	±0.3 dB	
> 25 MHz to 100 MHz		±0.5 dB
> 100 MHz to 200 MHz		±1.0 dB
> 200 MHz to 250 MHz		±2.0 dB

Amplitude flatness (1 V_{P-P} , relative to 1 kHz), typical

AFG31021, AFG31022, AFG31051, AFG31052, AFG31101, AFG31102, AFG31151, AFG31152	AFG31251 / AFG31252
±0.1 dB	≤ 150 MHz: ±0.1 dB > 150 MHz to 250 MHz: ±0.3 dB

Harmonic distortion (1 $V_{\text{P-P}}$), typical

Frequency range	AFG31021, AFG31022, AFG31051, AFG31052, AFG31101, AFG31102
10 Hz to <20 kHz	< -70 dBc
≥20 kHz to <1 MHz	< -60 dBc
≥1 MHz to <5 MHz	< -50 dBc
≥5 MHz to ≤100 MHz	<-37 dBc

Frequency range	AFG31151, AFG31152, AFG31251, AFG31252
10 Hz to < 1 MHz	< -60 dBc
≥ 1 MHz to < 5 MHz	< -50 dBc
≥ 5 MHz to ≤ 25 MHz	<-37 dBc
≥ 25 MHz to ≤ 250 MHz	<-30 dBc

THD, typical

 \leq 0.1%, 10 Hz to 20 kHz, 1 V_{P-P}

Spurious noise (1 V_{P-P}), typical

Frequency range	AFG31021, AFG31022, AFG31051, AFG31052, AFG31101, AFG31102
≥ 10 Hz to <1 MHz	< -60 dBc
≥ 1 MHz to <25 MHz	< -50 dBc
≥ 25 MHz to ≤100 MHz	< -50 dBc + 6 dBc/octave

Frequency range	AFG31151, AFG31152, AFG31251, AFG31252
10 Hz to < 1 MHz	< -60 dBc
≥ 1 MHz to ≤25 MHz	<-47 dBc
≥25 MHz to ≤250 MHz	< -47 dBc + 6 dBc/octave

Phase noise, typical

< -110 dBc/Hz at 20 MHz, 10 kHz offset, 1 $V_{\textrm{P-P}}$

Residual clock noise, all models

-63 dBm

Square

Frequency range

AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
1 μHz to 20 MHz	1 µHz to 40 MHz	1 μHz to 80 MHz	1 μHz to 120 MHz	1 µHz to 160 MHz

Rise/fall time, typical

	AFG31021 / AFG31022	AFG31051 / AFG31052		AFG31151 / AFG31152	AFG31251 / AFG31252
Amplitude ≤ 5 Vpp	≤ 7.0 ns	≤ 5.0 ns	≤ 3.5 ns	≤ 3.0 ns	≤ 2.0 ns
Amplitude > 5 Vpp	≤ 8.0 ns	≤6.0 ns	≤ 4.2 ns		

Overshoot, typical < 5%

Jitter (RMS), typical 2.5 ps

Ramp

Frequency range AFG31021 / AFG31022 AFG31051 / AFG31052 AFG31101 / AFG31102 AFG31151 / AFG31152 AFG31251 / AFG31252 1 μHz to 500 kHz 1 μHz to 800 kHz 1 μHz to 1 MHz 1 μHz to 1.5 MHz 1 μHz to 2.5 MHz

Linearity, typical (1 kHz, 1 V_{P-P},

100% symmetry)

AFG31021 / AFG31022 AFG31051 / AFG31052 AFG31151 / AFG31152 AFG31101 / AFG31102 AFG31251 / AFG31252 ≤ 0.1% of peak output ≤ 0.1% of peak output ≤ 0.15% of peak output ≤ 0.2% of peak output ≤ 0.2% of peak output

Symmetry 0% to 100%

Pulse

Frequency range

AFG31021 / AFG31022 AFG31051 / AFG31052 AFG31101 / AFG31102 AFG31151 / AFG31152 AFG31251 / AFG31252 $1 \mu Hz$ to 20 MHz $1 \mu Hz$ to 40 MHz $1 \mu Hz$ to 80 MHz $1 \mu Hz$ to 120 MHz $1 \, \mu Hz$ to $160 \, MHz$

Pulse width

AFG31021 / AFG31022 AFG31051 / AFG31052 AFG31101 / AFG31102 AFG31151 / AFG31152 AFG31251 / AFG31252 16 ns to 999.99 s 10 ns to 999.99 s 6 ns to 999.99 s 5 ns to 999.99 s 4 ns to 999.99 s

Pulse width resolution 10 ps or 5 digits

Pulse Duty 0.001% to 99.999% (limitations of pulse width apply)

Edge transition time

AFG31021 / AFG31022 | AFG31051 / AFG31052 | AFG31101 / AFG31102 AFG31151 / AFG31152 AFG31251 / AFG31252 8 ns to 0.625 * Pulse 6 ns to 0.625 * Pulse 4 ns to 0.625 * Pulse 3 ns to 0.625 * Pulse 2 ns to 0.625 * Pulse Period Period Period Period Period

Edge transition time

resolution

10 ps or 4 digits

Lead delay range

Mode	Characteristic		
Continuous	0 ps to Period		
Burst	0 ps to Period – [Pulse Width + 0.8 * (Leading Edge Time + Trailing Edge Time)]		

Lead delay resolution 10 ps or 8 digits

Overshoot, typical < 5% Jitter (RMS), typical 2.5 ps

DC

Range (into 50 Ω)

	AFG31151, AFG31152, AFG31251, AFG31252
-5 V to 5 V	-2.5 V to 2.5 V

Resolution (into 50 Ω) 1 mV or 4 digits

± (1% of |setting | +1mV) **Accuracy**

Noise

Bandwidth (-3 dB)

AFG31021, AFG31022, AFG31051, AFG31052, AFG31101, AFG31102 AFG31252 150 MHz 360 MHz

Noise type

White Gaussian

Internal noise

	Characteristic	
Add	When activated, output signal amplitude is reduced to 50%	
Level	0.0% to 50% of amplitude (V _{P.P}) setting	
Resolution	1%	

Other waveforms

Frequency range

AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
1 μHz to 500 kHz	1 μHz to 800 kHz	1 μHz to 1 MHz	1 μHz to 1.5 MHz	1 μHz to 2.5 MHz

Arbitrary waveforms

Frequency range

	AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102		AFG31251 / AFG31252
Normal	1 mHz to 12.5 MHz	1 mHz to 25 MHz	1 mHz to 50 MHz	1 mHz to 75 MHz	1 mHz to 125 MHz
Burst mode	1 mHz to 6.25 MHz	1 mHz to 12.5 MHz	1 mHz to 25 MHz	1 mHz to 37.5 MHz	1 mHz to 62.5 MHz

Effective analog bandwidth (-3 dB)

, , , , , , , , , , , , , , , , , , , ,	AFG31151, AFG31152, AFG31251, AFG31252
150 MHz	360 MHz

Waveform length

2 to 131,072

Sample rate

	AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
Waveform length ≤ 16,384	250 MSa/s	1 GSa/s	1 GSa/s	2 GSa/s	2 GSa/s
Waveform length > 16,384	250 MSa/s				

Vertical resolution

14 bit

Rise/fall time, typical

	AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
Amplitude ≤ 5Vpp	≤ 3.5 ns	≤ 3.5 ns	≤ 3.5 ns	≤ 2 ns	≤ 2 ns
Amplitude > 5Vpp	≤ 4.2 ns	≤ 4.2 ns	≤ 4.2 ns		

Jitter (RMS), typical

2.5 ps

General characteristics - Basic mode

Modulation

AM, FM, PM

Specification	Characteristic
Carrier	All except pulse, noise, DC
Source	Internal or external
Internal modulating waveform	Sine, Square, Ramp, Noise, ARB (maximum waveform length: AM 131,072 pts; FM/PM/PWM 2,048 pts)
Internal modulating frequency	1 mHz to 1 MHz

AM modulation depth 0.0~% to 120 %

AM modulation resolution 0.1%

Minimum FM peak deviation DC

Maximum FM peak deviation

	AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
Sine	12.5 MHz	25 MHz	50 MHz	75 MHz	125 MHz
Square,	10 MHz	20 MHz	40 MHz	60 MHz	80 MHz
Arb	6.25 MHz	12.5 MHz	25 MHz	37.5 MHz	62.5 MHz
Others	250 kHz	400 kHz	500 kHz	750 kHz	1.25 MHz

PM phase deviation range 0° to 180°

PM phase resolution 0.1°

FSK

Specification	Characteristic
Carrier	All except pulse, noise, DC
Source	Internal or external
Number of keys	2
Internal key rate	1 mHz to 1 MHz

PWM

Specification	Characteristic
Carrier	Pulse
Source	Internal or external
Internal modulating waveform	Sine, Square, Ramp, Noise, ARB (maximum waveform length: 2,048 pts)
Internal modulating frequency	1 mHz to 1 MHz
Deviation range	0% to 50.0% of pulse period

Sweep

Type Linear, Logarithmic

Waveforms All, except Pulse, Noise, DC

Maximum total sweep time 500 s

Accuracy, typical: ≤ 0.4%

Minimum start/stop frequency All except ARB: 1 µHz

ARB: 1 mHz

Maximum start/stop frequency

	AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
Sine	25 MHz	50 MHz	75 MHz	125 MHz	250 MHz
Square	20 MHz	40 MHz	80 MHz	120 MHz	160 MHz
Arb	12.5 MHz	25 MHz	50 MHz	75 MHz	125 MHz
Others	500 kHz	800 kHz	1 MHz	1 MHz	2.5 MHz

Burst

Waveform All except Noise, DC Type Triggered, gated

Burst count 1 to 1,000,000 cycles or Infinite

Intenal trigger rate $1 \mu s$ to 500.0 s

Gate and trigger sources Internal, external, remote interface

$InstaView^{^{\text{\tiny TM}}}$

Maximum measurement range

(DC + peak AC voltage)

	AFG31151, AFG31152, AFG31251, AFG31252
-10 V to 10 V	-5 V to 5 V

DC level measurement

Specification	Characteristic		
Accuracy (into 50Ω), typical	± (2 % of setting + 20 mVpp)		
Resolution	1 mV or 4 digits		

Amplitude measurement

Specification	Characteristic
Accuracy (sine, 1 kHz, 1 V_{P-P} , into 50 Ω , typical)	± (2 % of setting + 20 mV)
Resolution	1 mV or 4 digits

Bandwidth (-3 dB) 500 MHz

General characteristics - Basic mode

Flatness, sine, 1 $V_{\text{P-P}}$, into 50 ohm, relative to 1 kHz, typical

AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252	
0 to 100 MHz: ±1 dB			0 to 200 MHz: ±1 dB		
			200 MHz to 250 MHz: ±2 dB		

Cable propagation delay measurement, typical

Specification	Characteristic			
Range	0 to 20 ns (approximately 4 m/13 feet in length)			
Accuracy, typical	± 500 ps			

General characteristics - Advanced mode

Waveform memory size	16 Mpts (128 Mpts optional) each channel								
Run mode	Standard: Continuous								
	Optional: Sequence,	Triggered, Gated							
Number of waveform entries	Continuous, Triggere	d, Gated: 1							
	Sequence: 1 to 256								
Minimum waveform length	168 pts								
Waveform granularity	1 pt								
Vertical resolution	14 bits								
Jump/trigger events	External trigger (rising or falling edge), manual trigger, timer, SCPI commands								
Repeat count	1 to 1,000,000 or infir	nite							
Timer range	2 µS to 3600 S								
Timer resolution	4 ns or 8 digits								
Variable sample rate		AFG31021 / AFG31022	AFG31 AFG31		AFG31101 AFG31102	I	AFG31151 / AFG31152		AFG31251 / AFG31252
	Range	1 µSa/s to 250 MSa/s	1 µSa/s 500 MS		1 μSa/s to	1 GSa/s	1 μSa/s to 2 GS	a/s	1 μSa/s to 2 GSa/s
	Accuracy	10 ⁻⁶ Sa/s							
	Resolution	1 μSa/s or 12 digit	S						
Rise/Fall time, typical	AFG31021 / AFG31	022 AFG31051 / A	AFG31052	AFG31101	/ AFG31102	AFG31	151 / AFG31152	AFG	31251 / AFG31252
	$\begin{array}{ll} \text{Amplitude} \geq 5 \ \text{V}_{\text{P,P}} \leq 4.2 \ \text{ns} \\ \text{Amplitude} < 5 \ \text{V}_{\text{P,P}} \leq 3.5 \ \text{ns} \end{array} \qquad \qquad \leq 2.0 \ \text{ns}$					0 ns			
Overshoot	< 4%								

General characteristics - Advanced mode

Level flatness, typical (sine, 1 V_{P-P}, relative to 1 kHz)

Frequency range	All models		
< 5MHz	±0.3 dB		
≥ 5 MHz to 25 MHz	±0.5 dB		
≥ 25 MHz to 50 MHz	±0.6 dB		
≥ 50 MHz to 100 MHz	±1.0 dB		
≥ 100 MHz to 150 MH	±1.5 dB		
≥ 150 MHz to 250 MHz	±2.3 dB		

Harmonic distortion, typical (sine with 64 pts/cycle, 1 V_{P-P})

AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252
< -60 dBc at 250 MSa/S or 3.90625 MHz	< -55 dBc at 500 MSa/S or 7.8125 MHz	< -50 dBc at 1 GSa/S or 15.625 MHz	< -45 dBc at 2 GSa/S or 31.25 MHz	< -45 dBc at 2 GSa/S or 31.25 MHz

Spurious, typical (sine with 64 pts/ cycle, 1 $V_{\text{P-P}}$)

 AFG31021 / AF 31022
 AFG31051 / AFG31052
 AFG31101 / AFG31102
 AFG31151 / AFG31152
 AFG31251 / AFG31252

 < -60 dBc at 250 MSa/S or 3.90625 MHz</td>
 < -55 dBc at 500 MSa/S or 7.8125 MHz</td>
 < -50 dBc at 1 GSa/S or 31.25 MHz</td>
 < -45 dBc at 2 GSa/S or 31.25 MHz</td>
 < -45 dBc at 2 GSa/S or 31.25 MHz</td>

Spurious free dynamic range, typical (sine with 64 pts/cycle, 1 V_{P-P})

 AFG31021 / AFG31022
 AFG31051 / AFG31052
 AFG31101 / AFG31102
 AFG31151 / AFG31152
 AFG31251 / AFG31252

 < -60 dBc at 250 MSa/S or 3.90625 MHz</td>
 < -55 dBc at 500 MSa/S or 5.625 MHz</td>
 < -50 dBc at 1 GSa/S or 31.25 MHz</td>
 < -45 dBc at 2 GSa/S or 31.25 MHz</td>
 < -45 dBc at 2 GSa/S or 31.25 MHz</td>

Phase noise, typical (sine with 64 pts/cycle, 1 V_{P-P}, at 10 kHz offset)

AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151 / AFG31152	AFG31251 / AFG31252	
< -132 dBc at 250 MSa/	< -130 dBc at 500 MSa/	< -125 dBc at 1 GSa/S	< -113 dBc at 2 GSa/S	< -113 dBc at 2 GSa/S	
S or 3.90625 MHz	S or 7.8125 MHz	or 15.625 MHz	or 31.25 MHz	or 31.25 MHz	

Skew control

Range -320 ns to 320 ns (channel 1 to channel 2 on dual channel models, at maximum sample rate)

Resolution 100 ps or 4 digits **Accuracy, typical** $\pm (1\% \text{ of } |\text{setting}| + 500 \text{ ps})$

Initial skew, typical < 500 ps

System characteristics

Output Frequency Resolution

Frequency accuracy ±10⁻⁶ of setting (all except ARB), 0 °C to 50 °C (32 °F to 122 °F)

 $\pm 10^{-6}$ of setting \pm 1 μ Hz (ARB), 0 °C to 50 °C (32 °F to 122 °F)

Aging $\pm 1.0 \times 10^{-6}$ per year

Phase

 Range
 -180° to +180°

 Resolution
 0.01° (sine)

0.1° (other waveforms)

Remote program interface GPIB, Ethernet 10BASE-T / 100BASE-T / 1000BASE-T, USB 2.0

System characteristics

Maximum configuration times, typical

	USB	LAN	GPIB
Function change	61 ms	61 ms	63 ms
Frequency change (except Pulse)	3 ms	4 ms	6 ms
Frequency change (Pulse)	2.5 ms	3 ms	8 ms
Amplitude change	65 ms	66 ms	77 ms
Select user ARB (4k points from USB Memory)	43 ms	40 ms	53 ms
Select user ARB (128k points from USB Memory)	86 ms	92 ms	92 ms
Data download time for 4k points	36 ms	21 ms	21 ms

Power source

Source 100-240 V, 47-63 Hz

115 V, 360-440 Hz

Consumption 120 W

Warm up time, typical 20 minutes minimum

Power on self diagnosis time < 24 s

Acoustic noise < 50 dBA

Display 9-inch capacitive touch screen with 800 * 480 resolution

User interface and Help languages English, French, German, Japanese, Korean, Simplified and Traditional Chinese, Russian (user selectable)

Auxiliary input characteristics

External modulation input, channel

1 and channel 2

Input range

	Characteristic
AM, FM, PM, PWM	±1 V full range
FSK	3.3 V logic level

Input impedance $5.2 \text{ k}\Omega$

Frequency range 125 kHz (1 MSa/s)

External Trigger input

Level TTL compatible

 $\begin{array}{ll} \text{Impedance} & 10 \text{ k}\Omega \\ \\ \text{Minimum pulse width} & 100 \text{ ns} \end{array}$

Slope Positive or negative selectable

Trigger delay range 0 ns to 85 s

Trigger delay resolution 100 ps or 5 digits

Trigger latency, typical 390 ns (trigger input to signal output)

Jitter (RMS), typical 100 ps (signal output, with external trigger input in burst mode)

10 MHz reference clock input

 $\begin{array}{ll} \text{Impedance} & 1 \ k\Omega \\ \text{Input coupling} & AC \end{array}$

Auxiliary input characteristics

Required input voltage swing 100 mV_{P-P} to 5 V_{P-P} Lock range $10 \text{ MHz} \pm 35 \text{ kHz}$

Channel 1 external add input

Impedance 50 Ω

 $\begin{array}{ll} \textbf{Input range} & -1 \ \text{V to +1 V (DC + peak AC)} \\ \textbf{Bandwidth} & DC \ \text{to 10 MHz (-3 dB) at 1 V}_{P-P} \\ \end{array}$

Auxiliary output characteristics

Channel 1 trigger output

Level Positive TTL level pulse into 1 $k\Omega$

Impedance 50Ω

Jitter, RMS, typical 10 ps for all models

Output frequency

	Characteristic
Waveform frequency < 4.9 MHz	Same as the waveform frequency
Waveform frequency ≥ 4.9 MHz < 50 MHz	A fraction of the waveform frequency
Waveform frequency ≥ 50 MHz	No output

10 MHz reference clock out

Physical characteristics

Dimensions

 Height
 191.8 mm (7.55 in.)

 Width
 412.8 mm (16.25 in.)

 Depth
 143.3 mm (5.64 in.)

Weight

 Net
 4.7 kg (10.4 lb.)

 Shipping
 7.0 kg (15.4 lb.)

EMC, environment, and safety

Temperature	
Operating	0 °C to +50 °C (32 °F to 122 °F)
Nonoperating	-30 °C to +70 °C (-22 °F to 158 °F)
Humidity	
Operating	≤ 80%, 0 °C to 40 °C (32 °F to104 °F)
	\leq 60%, > 40°C to 50°C (104 °F to 122 °F), noncondensing
Nonoperating	5% to 90%, < 40 °C (< 104 °F), noncondensing
	5% to 80%, ≥ 40 °C to 60 °C (≥ 104 °F to 140 °F), noncondensing
	5% to 40%, > 60 °C to 70 °C (> 140 °F to 158 °F), noncondensing
Altitude	
Operating	Up to 3,000 m (9,842 ft.)
Nonoperating	Up to 12,000 m (39,370 ft.)
EMC compliance	EN61326-1:2013, EN 61326-2-1:2013
European Union	EU Council Directive 2004/108/EC
Safety	UL 61010-1:2004
	CAN/CSA C22.2 No. 61010-1:2004
	IEC 61010-1:2001
Over-temperature protection	Instrument is protected from over-temperature by turning off outputs

Ordering Information

Models

AFG31021 1 µHz to 25 MHz sine wave, 1-channel arbitrary function generator AFG31022 1 µHz to 25 MHz sine wave, 2-channel arbitrary function generator AFG31051 1 μ Hz to 50 MHz sine wave, 1-channel arbitrary function generator AFG31052 1 μ Hz to 50 MHz sine wave, 2-channel arbitrary function generator AFG31101 $1\ \mu Hz$ to 100 MHz sine wave, 1-channel arbitrary function generator AFG31102 1 μ Hz to 100 MHz sine wave, 2-channel arbitrary function generator AFG31151 1 μ Hz to 150 MHz sine wave, 1-channel arbitrary function generator AFG31152 1 µHz to 150 MHz sine wave, 2-channel arbitrary function generator AFG31251 1 µHz to 250 MHz sine wave, 1-channel arbitrary function generator AFG31252 1 μHz to 250 MHz sine wave, 2-channel arbitrary function generator

Options

Factory options

MEM Extends arbitrary waveform memory to 128 Mpts/ch in Advanced mode

SEQ Enables Sequence, Triggered and Gated modes in Advanced mode

Feature upgrade after purchase

The AFG31000 products offer several ways to easily add functionality after the initial purchase.

Description (node locked licenses)	For one channel instruments	For two channel instruments
Enables Sequence, Triggered, and Gated modes in Advanced mode	AUP-AFG3SEQ-1	AUP-AFG3SEQ-2
Extends arb memory to 128 Mpts/ch in Advanced mode	AUP-AFG3MEM-1	AUP-AFG3MEM-2
Bandwidth extension from 25 MHz to 50 MHz	AUP-AFG3BW25T50-1	AUP-AFG3BW25T50-2
Bandwidth extension from 25 MHz to 100 MHz	AUP-AFG3BW25T100-1	AUP-AFG3BW25T100-2
Bandwidth extension from 50 MHz to 100 MHz	AUP-AFG3BW50T100-1	AUP-AFG3BW50T100-2
Bandwidth extension from 150 MHz to 250 MHz	AUP-AFG3BW150T250-1	AUP-AFG3BW150T250-2

Power plug options

Opt. A0

North America power plug (115 V, 60 Hz)

Opt. A1

Universal Euro power plug (220 V, 50 Hz)

Opt. A2

United Kingdom power plug (240 V, 50 Hz)

Opt. A3

Australia power plug (240 V, 50 Hz)

Opt. A5

Switzerland power plug (220 V, 50 Hz)

Opt. A6

Japan power plug (100 V, 50/60 Hz)

 Opt. A10
 China power plug (50 Hz)

 Opt. A11
 India power plug (50 Hz)

 Opt. A12
 Brazil power plug (60 Hz)

Opt. A99 No power cord

Language options

Opt. L0 English front panel overlay (default)

Opt. L1 French front panel overlay

Opt. L2 Italian front panel overlay

Opt. L3 German front panel overlay

Opt. L4 Spanish front panel overlay

Opt. L5 Japanese front panel overlay

Opt. L6 Portuguese front panel overlay

Opt. L7 Simplified Chinese front panel overlay
Opt. L8 Traditional Chinese front panel overlay

Opt. L9 Korean front panel overlay

Opt. L10 Russian front panel overlay

Opt. L99 No front panel overlay

Service options

Opt. C3
Calibration Service 3 Years
Opt. C5
Calibration Service 5 Years
Opt. D1
Calibration Data Report

 Opt. D3
 Calibration Data Report 3 Years (with Opt. C3)

 Opt. D5
 Calibration Data Report 5 Years (with Opt. C5)

 Opt. R5
 Repair Service 5 Years (including warranty)

Opt. T3 Three Year Total Protection Plan, includes repair or replacement coverage from wear and tear, accidental damage, ESD or EOS

plus preventative maintenance. Including a 5 day turnaround time and priority access to customer support

Opt. T5 Five Year Total Protection Plan, includes repair or replacement coverage from wear and tear, accidental damage, ESD or EOS

plus preventative maintenance. Including a 5 day turnaround time and priority access to customer support

Accessories are not covered by the instrument warranty and Service Offerings.

Accessories

Standard accessories

---- AFG31000 Series Arbitrary Function Generator Compliance, Installation, and Safety Instructions

 012-1732-xx
 BNC cable shielded, 3 ft.

 174-4401-xx
 USB cable, A to B, 3 ft.

Power cord

---- NIST-traceable calibration certificate

Three-year warranty on parts and labor

Recommended accessories

012-1732-xx BNC cable shielded, 3 ft.

012-0991-xx GPIB cable, double shielded

011-0049-02 50 Ω BNC terminator

ACD4000B Soft transit case

HCTEK54 Hard transit case (requires ACD4000B)

Warranty

Product warranty Three-year warranty on parts and labor

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

Product Area Assessed: The planning, design/development and manufacture of electronic Test and Measurement instruments.

Datasheet		
Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their		(T)
		75W-61444-0
	Tektro	nix