Series 3700A System Switch/Multimeter and Plug-In Cards

Datasheet

KEITHLEY

A Tektronix Company

The Series 3700A offers scalable, instrument grade switching and multi-channel measurement solutions that are optimized for automated testing of electronic products and components. The Series 3700A includes four versions of the 3706A system switch mainframe along with a growing family of plug-in switch and control cards. When the 3706A mainframe is ordered with the high performance multimeter, you receive a tightly integrated switch and measurement system that can meet the demanding application requirements in a functional test system or provide the flexibility needed in stand-alone data acquisition and measurement applications.

Key Features

- Six-slot system switch mainframe with optional high performance multimeter
- Multi-processor architecture optimized for high throughput scanning and pattern switching applications
- Remote PC control via Ethernet, USB, and GPIB interfaces
- Up to 576 two-wire or 720 one-wire multiplexer channels in one mainframe
- Up to 2,688 one-pole matrix crosspoints in one mainframe
- Embedded Test Script Processor (TSP®) offering unparalleled system automation, throughput, and flexibility
- TSP-Link Technology master/slave connection provides easy system expansion and seamless connection to Series 2600 and 2600B SourceMeter ${ }^{\circledR}$ SMU instruments
- Capable of over 14,000 readings per second to memory with optional high performance multimeter
- LXI interface with embedded Web browser interface for test setup, maintenance, and basic application control

Maximizes System Control and Flexibility

To provide users with greater versatility when designing test systems, the Series 3700A mainframes are equipped with many standard features. For example, easy connectivity is supported with three remote interfaces: LXI/Ethernet, General Purpose Interface Bus (GPIB), and Universal Serial Bus (USB). Fourteen digital I/O lines are also included, which are programmable and can be used to control external devices such as component handlers or other instruments. Additionally, system control can be greatly enhanced by using our Test Script Processor (TSP) technology. This technology provides "smart" instruments with the ability to perform distributed processing and control at the instrument level versus a central PC.

High Quality Switching at a Value Price

The Series 3700A builds upon Keithley's tradition of producing innovative, high quality, precise signal switching. This series offers a growing family of high density and general purpose plug-in cards that accommodates a broad range of signals at very competitive pricing. The Series 3700A supports applications as diverse as design validation, accelerated stress testing, data acquisition, and functional testing.

3706A Mainframe

The Series 3700A includes the base 3706A system switch/multimeter mainframe with three options for added flexibility. This mainframe contains six slots for plug-in cards in a compact 2 U high (3.5 inches/89 mm) enclosure that easily accommodates the needs of medium to high channel count applications. When fully loaded, a mainframe can support up to 576 two-wire multiplexer channels or 2,688 one-pole matrix crosspoints for unrivaled density and economical per channel costs.

High Performance, 7½-digit Multimeter (DMM)

The high performance multimeter option provides up to 7122 -digit measurements, offering 26 -bit resolution to support your ever-increasing test accuracy requirements.

This flexible resolution supplies a DC reading rate from $>14,000$ readings/second at $31 / 2$ digits to 60 readings/ second at $71 / 2$ digits to accommodate a greater span of applications. The multimeter does not use a card slot, so you maintain all six slots in your mainframe. In addition, the multimeter is wired to the mainframe's analog backplane, ensuring a high quality signal path from each card channel to the multimeter.

Single Channel Reading Rates		
NPLC	DCV/ 2 Wire Ohms	4 Wire Ohms
1.0	60	29
0.2	295	120
0.06	935	285
0.006	6,200	580
0.0005	14,100	650

The multimeter supports 13 built-in measurement functions, including: DCV, ACV, DCI, ACI, frequency, period, two-wire ohms, four-wire ohms, three-wire RTD temperature, four-wire RTD temperature, thermocouple temperature, thermistor temperature, and continuity. In addition, the multimeter offers extended low ohms (1Ω) and low current ($10 \mu \mathrm{~A}$) ranges. In-rack calibration is supported, which reduces both maintenance and calibration time.

Measurement capabilities of the high performance multimeter

TSP Distributed Control Increases Test Speed and Lowers Test Cost

TSP technology enhances instrument control by allowing users the choice of using standard PC control or of creating embedded test scripts that are executed on microprocessors within the instrument. By using TSP test scripts instead of a PC for instrument control, you avoid communication delays between the PC controller and instrument, which results in improved test throughput. Test scripts can contain math and decision-making rules that further reduce the interaction between a host PC and the instrument.

This form of distributed control supports the autonomous operation of individual instruments or groups of instruments and can possibly remove the need for a high level PC controller, which lowers test and ownership costs. This is the same proven TSP technology found in our innovative Series 2600B System SourceMeter ${ }^{\circledR}$ SMU instruments.

TSP-Link Technology for Easy and Seamless System Coordination and Expansion

If your channel density requirements grow or if you need to process more signal types, use TSP-Link to expand your system. The TSP-Link master/slave connection offers easy system expansion between Series 3700A mainframes. You can also use TSP-Link to connect to other TSP-Link enabled instruments such as Series 2600B SourceMeter SMU instruments. Everything connected with TSP-Link can be controlled by the master unit, just as if they were all housed in the same chassis.

This high speed system expansion interface lets users avoid the complex and time-consuming task of expanding their remote interfaces to another mainframe. There is no need to add external triggers and remote communication cables to individual instruments, since all TSP-Link connected devices can be controlled from a single master unit.

Test Script Builder Software Suite

Test Script Builder is a software tool that is provided with all Series 3700A instruments to help users easily create, modify, debug, and store TSP test scripts. It supplies a project/file manager window to store and organize test scripts, a context-sensitive program editor to create and modify test TSP code, and an immediate instrument control window to send Ethernet, GPIB, and USB commands and to receive data from the instrument. The immediate window also allows users to see the output of a given test script and simplifies debugging.

Test Script Builder Software Suite

L/VI Version 1.4

LXI Core 2011 with LXI Clock Synchronization, LXI Timestamped Data, LXI Event Messaging, LXI Event Log.

Transportable Memory, USB 2.0 Device Port

All 3706A mainframes contain a USB device port for easy transfer of readings, configurations, and test scripts to memory sticks. This port, which is located on the front panel, provides you with easy access to and portability of measurement results. Simply plug in a memory stick and, with a few simple keystrokes, gain access to virtually unlimited memory storage. Additional capabilities include saving and recalling system configurations and storage for TSP scripts.

Embedded Web Server

The built-in Web interface offers a quick and easy method to control and analyze measurement results. Interactive schematics of each card in the mainframe support point-and-click control for opening and closing switches. A scan list builder is provided to guide users through the requirements of a scan list (such as trigger and looping definitions) for more advanced applications. When the mainframe is ordered with the multimeter, additional Web pages are included for measurement configuration and viewing, including a graphing toolkit.

Built-in Web Server Interface

1. Configure your switch channels and measurement functions. Configure the DMM to make your measurements at the desired speed, resolution, etc. and assign them to the desired channels.

2. Build and run your automated scan list. The toolkit makes it easy to build and execute an automated sequence of channel-open and channel-close commands and triggered multimeter measurements.

3. Analyze your data. View your results in real-time or historical mode with point-and-click simplicity. Data can be exported directly to your PC in either numerical or graphical formats for presentation or other applications.

3706A front panel

3706A-S front panel

3706A-NFP and 3706A-SNFP front panel

3706A rear panel

High Performance Multimeter Specifications (Rev. A)

DC Specifications

Conditions

1 PLC or 5 PLC.
For <1PLC, add appropriate "ppm of range" adder from "RMS Noise" table.
Includes rear panel Analog Backplane connector and transducer conversion. Refer to DC Notes for additional card uncertainties.

Function	Range ${ }^{1}$	Resolution	Test Current or Burden Voltage	Input Resistance or Open Circuit Voltage ${ }^{2}$	Accuracy$\begin{gathered} \pm(\mathrm{ppm} \text { of reading + ppm of range) } \\ \text { (ppm }=\text { parts per million) } \\ (\mathrm{e} . \mathrm{g} ., 10 \mathrm{ppm}=0.001 \%) \end{gathered}$			Temperature Coefficient $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$
					$\begin{gathered} 24 \text { Hour }^{3} \\ 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { Day } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 1 \mathrm{Year} \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{gathered}$	
Voltage ${ }^{4}$	$100.00000 \mathrm{mV}{ }^{19}$	$0.01 \mu \mathrm{~V}$		$\begin{gathered} >10 \mathrm{G} \Omega \\ \text { or } 10 \mathrm{M} \Omega \pm 1 \% \end{gathered}$	$10+9$	$25+9$	$30+9$	$(1+5){ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{~V}^{19}$	$0.1 \mu \mathrm{~V}$		$\begin{gathered} >10 \mathrm{G} \Omega \\ \text { or } 10 \mathrm{M} \Omega \pm 1 \% \end{gathered}$	$7+2$	$25+2$	$30+2$	$(1+1){ }^{\circ} \mathrm{C}$
	10.000000 V	$1 \mu \mathrm{~V}$		$\begin{gathered} >10 \mathrm{G} \Omega \\ \text { or } 10 \mathrm{M} \Omega \pm 1 \% \end{gathered}$	$7+2$	$20+2$	$25+2$	$(1+1){ }^{\circ} \mathrm{C}$
	100.00000 V	$10 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$15+6$	$35+6$	$40+6$	$(5+1) /{ }^{\circ} \mathrm{C}$
	300.00000 V	$100 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$20+6$	$35+6$	$40+6$	$(5+1) /{ }^{\circ} \mathrm{C}$
Resistance ${ }^{4,5,6,7}$	1.0000000Ω	$0.1 \mu \Omega$	10 mA	8.2 V	$15+80$	$40+80$	$60+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.000000Ω	$1 \mu \Omega$	10 mA	8.2 V	$15+9$	$40+9$	$60+9$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.00000Ω	$10 \mu \Omega$	1 mA	13.9 V	$15+9$	$45+9$	$65+9$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.000000 \mathrm{k} \Omega$	$100 \mu \Omega$	1 mA	13.9 V	$20+4$	$45+4$	$65+4$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$10.000000 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$	9.1 V	$15+4$	$40+4$	$60+4$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	14.7 V	$20+4$	$45+5$	$65+5$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{M} \Omega$	$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	14.7 V	$25+4$	$50+5$	$70+5$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$10.000000 \mathrm{M} \Omega$	1Ω	$0.64 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	6.4 V	$150+6$	$200+10$	$400+10$	$(70+1) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mathrm{M} \Omega$	10Ω	$0.64 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	6.4 V	$800+30$	$2000+30$	$2000+30$	$(385+1) /{ }^{\circ} \mathrm{C}$
Dry Circuit Resistance ${ }^{6,8}$	1.0000000Ω	$1 \mu \Omega$	10 mA	27 mV	$25+80$	$50+80$	$70+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.000000Ω	$10 \mu \Omega$	1 mA	20 mV	$25+80$	$50+80$	$70+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.00000Ω	$100 \mu \Omega$	$100 \mu \mathrm{~A}$	20 mV	$25+80$	$90+80$	$140+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$1.0000000 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	20 mV	$25+80$	$180+80$	$400+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
	$2.0000000 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$5 \mu \mathrm{~A}$	20 mV	$25+80$	$320+80$	$800+80$	$(8+1) /{ }^{\circ} \mathrm{C}$
Continuity (2 W)	$1.000 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1 mA	13.9 V	$40+100$	$100+100$	$100+100$	$(8+1) /{ }^{\circ} \mathrm{C}$
Current ${ }^{9}$	$10.000000 \mu \mathrm{~A}$	1 pA	$<61 \mathrm{mV}$		$40+50$	$300+50$	$500+50$	$(35+9) /{ }^{\circ} \mathrm{C}$
	$100.00000 \mu \mathrm{~A}$	10 pA	<105 mV		$50+9$	$300+30$	$500+30$	$(50+5) /{ }^{\circ} \mathrm{C}$
	1.0000000 mA	100 pA	<130 mV		$50+9$	$300+30$	$500+30$	$(50+5) /{ }^{\circ} \mathrm{C}$
	10.000000 mA	1 nA	<150 mV		$50+9$	$300+30$	$500+30$	$(50+5) /{ }^{\circ} \mathrm{C}$
	100.00000 mA	10 nA	$<0.4 \mathrm{~V}$		$50+9$	$300+30$	$500+30$	$(50+5) /{ }^{\circ} \mathrm{C}$
	1.0000000 A	100 nA	$<0.6 \mathrm{~V}$		$200+60$	$500+60$	$800+60$	$(50+10) /{ }^{\circ} \mathrm{C}$
	3.0000000 A	$1 \mu \mathrm{~A}$	$<1.8 \mathrm{~V}$		$1000+75$	$1200+75$	$1200+75$	$(50+10) /{ }^{\circ} \mathrm{C}$

Temperature

(Displayed in ${ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$, or K . Exclusive of probes errors.)

Thermocouples (Accuracy based on ITS-90)

Type	Range	Resolution	90 Day/1 Year, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ Simulated reference junction	$\begin{gathered} 90 \text { Day } / 1 \text { Year, } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ \text { Using } 3720, \\ 3721, \text { or } \\ 3724 \text { Cards } \end{gathered}$	Range	$\begin{gathered} 90 \text { Day/1 Year, } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ \text { Using } 3720, \\ 3721 \text {, or } \\ 3724 \text { Cards } \end{gathered}$	Temperature Coefficient $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$
\checkmark	-150 to $+760^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
K	-150 to $+1372^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
N	-100 to $+1300^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	-200 to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
T	-100 to $+400^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	-200 to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
E	-150 to $+1000^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	-200 to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
R	+400 to $+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	0 to $+400^{\circ} \mathrm{C}$	$2.3{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
S	+400 to $+1768^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	0 to $+400^{\circ} \mathrm{C}$	$2.3{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
B	+1100 to $+1820^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8^{\circ} \mathrm{C}$	+350 to $+1100^{\circ} \mathrm{C}$	$2.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

4-Wire RTD or 3-Wire RTD (100 Ω platinum [PT100], D100, F100, PT385, PT3916, or user 0Ω to $10 \mathrm{k} \Omega$) (Selectable Offset compensation On or Off)

For 3-wire RTD, dmm.connect=dmm.CONNECT_FOUR_WIRE, $\leq 0.1 \Omega$ lead resistance mismatching in Input HI and LO. Add $0.25^{\circ} \mathrm{C} / 0.1 \Omega$ of lead resistance mismatch.

4-Wire RTD	-200 to $+630^{\circ} \mathrm{C}$	$0.01^{\circ} \mathrm{C}$	$0.06^{\circ} \mathrm{C}$			$0.003^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
3-Wire RTD	-200 to $+630^{\circ} \mathrm{C}$	$0.01^{\circ} \mathrm{C}$	$0.75^{\circ} \mathrm{C}$			$0.003^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
$2.2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$. Not recommended with 3724 card. See 3724 manual for "Measurement Thermistor Considerations."							

DC Speeds vs. RMS Noise

Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation. 1PLC and 5PLC RMS noise are included in DC specifications.

				RMS Noise 16, PPM of Range RMS Noise Calculator: Add $2.5 \times$ "RMS Noise" to "ppm of range" (e.g., 10 V @ 0.006 PLC) "ppm of range" $=2.5 \times 7.0 \mathrm{ppm}+2 \mathrm{ppm}$					Measurements into Buffer (rdgs/s) ${ }^{13}$		Measurement to PC (ms/rdg) Azero Off ${ }^{13}$		
Function	NPLC	Aperture (ms)	Digits	100 mV	1 V	10 V	100 V	300 V	Azero On	Azero Off	Ethernet	GPIB	USB
DCV	5^{14}	83.3 (100)	71/2	1.0	0.07	0.05	0.7	0.2	9.5 (8)	12 (10)	86.3 (104)	86.1 (102.8)	86.3 (103.1)
	$1{ }^{14}$	16.7 (20)	$71 / 2$	0.9	0.12	0.1	0.8	0.35	42 (33)	59.8 (49.5)	19.4 (22.7)	19.5 (22.8)	19.9 (23.2)
	$0.2^{12,14}$	3.33 (4.0)	$61 / 2$	2.5	0.32	0.3	2.5	1.0	50 (40)	60 (50)	19.4 (22.7)	19.5 (22.8)	19.9 (23.2)
	$0.2{ }^{14}$	3.33 (4.0)	$61 / 2$	3.5	1.7	0.7	3.5	1.5	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	0.0615	1.0 (1.2)	51/2	12	3.0	1.5	8.0	3.5	205 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	$0.006{ }^{15}$	0.100 (0.120)	41/2	55	15	7.0	70	35	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	325	95	95	900	410	270 (270)	14,600 (14,250)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
$\begin{gathered} 2 W \Omega \\ (\leq 10 \mathrm{k} \Omega) \end{gathered}$				$\begin{gathered} \hline 10- \\ 100 \Omega \\ \hline \end{gathered}$	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$							
	5^{14}	83.3 (100)	71/2	2.0	0.5	0.4	-	-	9.5 (8)	12 (10)	87.0 (105)	86.1 (103)	86.5 (104)
	$1{ }^{14}$	16.7 (20)	71/2	3.5	0.8	0.6	-	-	42 (33)	59.8 (49.5)	21.0 (24.3)	19.5 (22.8)	19.9 (23.2)
	$0.2^{12,14}$	3.33 (4.0)	$61 / 2$	6.5	1.7	1.5	-	-	50 (40)	60 (50)	21.0 (24.3)	19.5 (22.8)	19.9 (23.2)
	0.2^{14}	3.33 (4.0)	61/2	8.0	4.5	5.5	-	-	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	$0.06{ }^{15}$	1.0 (1.2)	51/2	15	6	6.5	-	-	205 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	$0.006{ }^{15}$	0.100 (0.120)	41/2	60	15	15	-	-	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	190	190	190	-	-	270 (270)	14,100 (13,700)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
DCI				$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$\begin{array}{\|c\|} \hline 1 \mathrm{~mA}- \\ 100 \mathrm{~mA} \\ \hline \end{array}$	1 A	3 A					
	5^{14}	83.3 (100)	71/2	3.5	1.6	1.6	2.9	2.0	9.5 (8)	12 (10)	88 (103)	86.1 (102.8)	86.3 (103.1)
	$1{ }^{14}$	16.7 (20)	$61 / 2$	3.5	1.1	1.1	2.2	1.8	42 (33)	59.8 (49.5)	21.0 (22.7)	19.5 (22.8)	19.8 (23.1)
	$0.2^{12,14}$	3.33 (4.0)	$51 / 2$	50	5.0	3.0	4.0	8.0	50 (40)	60 (50)	19.4 (22.7)	19.5 (22.8)	19.8 (23.1)
	$0.2{ }^{14}$	3.33 (4.0)	41/2	100	35	12	4.0	8.0	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	$0.06{ }^{15}$	1.0 (1.2)	41/2	350	35	20	8.0	20	205 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	$0.006{ }^{15}$	0.100 (0.120)	$41 / 2$	400	200	40	50	100	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	2500	450	250	325	750	270 (270)	14,100 (13,700)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
$4 \mathrm{~W} \Omega$				1Ω	10-100 Ω	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$						
	5^{14}	83.3 (100)	71/2	5.5	0.8	0.5	0.5	-	5 (4)	5.9 (4.7)	173 (206)	173 (206)	173 (206)
	$1{ }^{14}$	16.7 (20)	71/2	15	1.4	0.5	0.7	-	23.5 (18.5)	29 (23)	39 (46)	39 (46)	39 (46)
	$0.2^{12,14}$	3.33 (4.0)	$51 / 2$	100	30	10	50	-	26.5 (21)	30 (24)	39 (46)	39 (46)	39 (46)
	0.2^{14}	3.33 (4.0)	$51 / 2$	300	50	10	63	-	80 (60)	120 (95)	12.3 (14.5)	11.3 (13.3)	11.7 (13.7)
	$0.06{ }^{15}$	1.0 (1.2)	41/2	500	50	15	70	-	140 (110)	285 (225)	6.2 (7.2)	6.3 (7.3)	6.5 (7.6)
	$0.006{ }^{15}$	0.100 (0.120)	$41 / 2$	750	75	30	100	-	200 (195)	580 (565)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	3500	450	250	250	-	210 (205)	650 (645)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
$\begin{gathered} \text { 4W } \Omega \\ \text { OCOMP } \end{gathered}$				1Ω	10-100 Ω	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$						
	5^{14}	83.3 (100)	71/2	5.5	0.8	0.5	0.5	-	2.5 (2.0)	2.9 (2.3)	343 (427)	341 (425)	342 (426)
	$1{ }^{14}$	16.7 (20)	71/2	16	1.5	0.7	1.5	-	12.7 (10)	14 (11.2)	77 (95)	74 (92)	75 (93)
	$0.2^{12,14}$	3.33 (4.0)	61/2	45	4.5	2.1	3.5	-	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)
	$0.2{ }^{14}$	3.33 (4.0)	$51 / 2$	500	50	13	30	-	46.5 (37)	56 (44)	22.7 (25)	20.5 (23)	21.1 (24)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	4500	650	400	400	-	129 (125)	215 (210)	6.7 (6.7)	6.8 (6.8)	7 (7)
Dry-Ckt Ω OCOMP				1-10 Ω	100Ω	$1 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$						
	5^{14}	83.3 (100)	$61 / 2$	8.0	10	10	8.0	-	2.5 (2.0)	2.9 (2.3)	347 (430)	345 (428)	346 (429)
	1^{14}	16.7 (20)	51/2	17	22	25	28	-	12 (9.5)	13 (10)	80 (99)	77 (95)	78 (97)
	$0.2^{12,14}$	3.33 (4.0)	41/2	50	50	50	50	-	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)
	$0.2{ }^{14}$	3.33 (4.0)	$31 / 2$	500	1000	1000	1500	-	35 (30)	45 (36)	27 (33)	25 (31)	26 (32)
	0.0005^{15}	0.0083 (0.001)	21/2	8500	8500	8500	8500	-	84 (84)	115 (110)	10.7 (10.7)	10.7 (10.7)	11 (11)

RTD Speeds vs. Noise

1 PLC and 5 PLC Noise are included in RTD Specifications.

Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz}$) Operation				Add ${ }^{\circ} \mathrm{C}$ to Reading ${ }^{16}$		Measurements into Buffer ${ }^{13}$ (rdg/s)		Measurement to PC ${ }^{13}$ ($\mathrm{ms} / \mathrm{rdg}$) Azero Off		
Function	NPLC	Aperture (ms)	Digits	4-Wire	3-Wire	Azero On	Azero Off	Ethernet	GPIB	USB
$\begin{aligned} & \text { OCOMP } \\ & \text { OFF } \end{aligned}$	5^{14}	83.3 (100)	$71 / 2$	0	0	5 (4)	5.9 (4.7)	173 (206)	173 (206)	173 (206)
	1^{14}	16.7 (20)	$71 / 2$	0	0	23.5 (18.5)	29 (23)	39 (46)	39 (46)	39 (46)
	$0.2^{12,14}$	3.33 (4.0)	$51 / 2$	0.01	0.01	26.5 (21)	30 (24)	39 (46)	39 (46)	39 (46)
	$0.2{ }^{14}$	3.33 (4.0)	$51 / 2$	0.18	0.18	80 (60)	120 (95)	12.3 (14.5)	11.3 (13.3)	11.7 (13.7)
	$0.06{ }^{15}$	1.0 (1.2)	$41 / 2$	0.24	0.24	140 (110)	285 (225)	6.2 (7.2)	6.3 (7.3)	6.5 (7.6)
	$0.006{ }^{15}$	0.100 (0.120)	$41 / 2$	0.37	0.37	200 (195)	580 (565)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	3.10	3.10	209 (205)	650 (645)	4.2 (4.4)	4.3 (4.5)	4.6 (4.8)
$\begin{gathered} \text { OCOMP } \\ \text { ON } \end{gathered}$	5^{14}	83.3 (100)	$71 / 2$	0	0	2.5 (2.0)	2.9 (2.3)	343 (427)	341 (425)	342 (426)
	1^{14}	16.7 (20)	$71 / 2$	0	0	12.7 (10)	14 (11.2)	77 (95)	74 (92)	75 (93)
	$0.2^{12,14}$	3.33 (4.0)	$61 / 2$	0.02	0.02	14 (11.2)	15 (12)	70 (86.5)	70 (86.5)	70 (86.5)
	$0.2{ }^{14}$	3.33 (4.0)	$51 / 2$	0.38	0.38	46.0 (37)	56 (44)	22.7 (25)	20.5 (23)	21.1 (24)
	0.0005^{15}	0.0083 (0.001)	$31 / 2$	4.67	4.67	128 (125)	215 (210)	6.7 (6.7)	6.8 (6.8)	7 (7)

System Performance ${ }^{13,14}$

312 -Digit Mode, Azero off, nPLC $=0.0005$. Time includes function change from either DCV or $2 \mathrm{~W} \Omega$ to listed function.

Function	Function Change (ms)	Range Change (ms)	Auto-range (ms)
DCV or $2 \mathrm{~W} \Omega(<10 \mathrm{k} \Omega)$	10	10	10
$4 \mathrm{~W} \Omega(<10 \mathrm{k} \Omega)$	20	20	20
DCl	10	10	10
Frequency or Period ${ }^{17}$	110	10	-
ACV or ACl^{17}	20	85	300

Buffer Transfer Speed	Ethernet	GPIB	USB
Average for 1000 readings	$2450 / \mathrm{s}$	$2000 / \mathrm{s}$	$1800 / \mathrm{s}$
Average for 1000 readings with timestamp	$2300 / \mathrm{s}$	$1800 / \mathrm{s}$	$1600 / \mathrm{s}$

Card	Single Command Excecution Time (ms)			
	channel.close (ch_list) or channel.open (ch_list)	5.7	5.8	6.1
3723,3724 $3731,3732^{18}$	channel.close (ch_list) or channel.open (ch_list)	2.3	2.4	2.7
3740	channel.close (ch_list 1-28) or channel.open (ch_list 1-28)	10.7	10.8	11.1
	channel.close (ch_list 29-32) or channel.open (ch_list 29-32)	22.7	22.8	23.1

DC Measurement Characteristics

DC Volts

A-D Linearity	1.0ppm of reading +2.0 ppm of range.
Input Impedance	$100 \mathrm{mV}-10 \mathrm{~V}$ Ranges: Selectable $>10 \mathrm{G} \Omega / /<400 \mathrm{pF}$ or $10 \mathrm{M} \Omega \pm 1 \%$. 100 V-300 V Ranges: $10 \mathrm{M} \Omega \pm 1 \%$.
Input Bias Current	$<50 \mathrm{pA}$ at $23^{\circ} \mathrm{C}$ with dmm.autozero=dmm. OFF or dmm.inputdivider=dmm.ON.
Common Mode Current	$<500 \mathrm{nA} \mathrm{p}$-p for $\leq 1 \mathrm{MHz}$.
Autozero Off Error	For DCV $\pm 1^{\circ} \mathrm{C}$ and ≤ 10 minutes, add \pm (8 ppm of reading $\left.+5 \mu \mathrm{~V}\right)$.
Input Protection	300 V all ranges.
Common Mode Voltage	300 V DC or 300 Vrms (425 V peak for AC waveforms) between any terminal and chassis.

Resistance

Max. 4W Ω Lead Resistance $\quad 5 \Omega$ per lead for 1Ω range; 10% of range per lead for $10 \Omega-1 \mathrm{k} \Omega$ ranges; $1 \mathrm{k} \Omega$ per lead for all other ranges.
Max. 4W Ω Lead Resistance (Dry Ckt)
0.5Ω per lead for 1Ω range; 10% of range per lead for $10 \Omega-100 \Omega$ ranges; 50Ω per lead for $1 \mathrm{k} \Omega-2 \mathrm{k} \Omega$ ranges.

Input Impedance	$1 \Omega-10 \Omega$ Ranges: $99 \mathrm{k} \Omega \pm 1 \% / /<1 \mu \mathrm{~F}$.
	$100 \Omega-2 \mathrm{k} \Omega$ Ranges: $10 \mathrm{M} \Omega \pm 1 \% / /<0.015 \mu \mathrm{~F}$.
Offset Compensation	Selectable on $4 \mathrm{~W} \Omega 1 \Omega-10 \mathrm{k} \Omega$ ranges.
Open Lead Detector	Selectable per channel. $1.5 \mu \mathrm{~A}, \pm 20 \%$ sink current per DMM SHI and SLO lead. Default on.
Continuity Threshold	Adjustable 1 to 1000Ω.
Autozero Off Error	For $2 \mathrm{~W} \Omega \pm 1^{\circ} \mathrm{C}$ and ≤ 10 minutes, add $\pm(8$ ppm of reading $+0.5 \mathrm{~m} \Omega)$ for 10Ω and $5 \mathrm{~m} \Omega$ for all other ranges.
Input Protection	300 V all ranges.

DC Current

Autozero OFF Error
For $\pm 1^{\circ} \mathrm{C}$ and ≤ 10 minutes, add \pm (8 ppm of reading + range error). Refer to table below.

Range	3 A	1 A	100 mA	10 mA	1 mA	$100 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$					
Shunt Resistance guaranteed by design	0.05Ω	0.05Ω	1Ω	10Ω	100Ω	$1 \mathrm{k} \Omega$	$6 \mathrm{k} \Omega$					
Burden Voltage	$<1.75 \mathrm{~V}$	$<0.55 \mathrm{~V}$	$<0.4 \mathrm{~V}$	$<150 \mathrm{mV}$	$<130 \mathrm{mV}$	$<105 \mathrm{mV}$	$<61 \mathrm{mV}$					
Burden Voltage with 3721 card	$<2.35 \mathrm{~V}$	$<1.15 \mathrm{~V}$	$<0.4 \mathrm{~V}$	$<150 \mathrm{mV}$	$<130 \mathrm{mV}$	$<105 \mathrm{mV}$	$<61 \mathrm{mV}$					
Autozero OFF "of range" Error	$100 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	50 nA	5 nA	0.85 nA					
For each additional amp after $\pm 1.5 \mathrm{~A}$ input, add the following to ppm of range:												
60									60	60	60	95

Input Protection
3 A, 250 V fuse.

Thermocouples

Conversion

ITS-90.
Reference Junction Internal, External, or Simulated (Fixed).

Open Lead Detector

Selectable per channel. Open $>1.15 \mathrm{k} \Omega \pm 50 \Omega$. Default on.
Common Mode Isolation
300 V DC or 300 Vrms (425 V peak for AC waveforms), $>10 \mathrm{G} \Omega$ and $<350 \mathrm{pF}$ any terminal to chassis.

DC Notes

1. 20% overrange on DC functions except 1% on 300 V range and 3.33% on 3 A range.
2. $\pm 5 \%$ (measured with $10 \mathrm{M} \Omega$ input resistance $\mathrm{DMM},>10 \mathrm{G} \Omega \mathrm{DMM}$ on $10 \mathrm{M} \Omega$ and $100 \mathrm{M} \Omega$ ranges). Refer to table for other $2 \mathrm{~W} / 4 \mathrm{~W}$ configurations. For Dry Circuit, $+20 \%,<1 \mathrm{mV}$ with dmm.offsetcompensation=ON for $100 \Omega-2 \mathrm{k} \Omega$ ranges

Range	2 W	4 W	4 W -Kelvin	Ocomp 4W	Ocomp 4W-Kelvin
$\mathbf{1 , 1 0 \Omega}$	8.2 V	8.2 V	8.2 V	12.1 V	12.1 V
$\mathbf{1 0 0}, \mathbf{1} \mathbf{k} \Omega$	13.9 V	14.1 V	13.9 V	15.0 V	12.7 V
$\mathbf{1 0} \mathbf{k} \Omega$	9.1 V	9.1 V	9.1 V	0.0 V	0.0 V
$\mathbf{1 0 0} \mathbf{k} \Omega, \mathbf{1} \mathbf{M} \Omega$	12.7 V	14.7 V	12.7 V	-	-
$\mathbf{1 0} \mathbf{M} \Omega, \mathbf{1 0 0} \mathbf{M} \boldsymbol{2}$	6.4 V	6.4 V	6.4 V	-	-

3. Relative to calibration accuracy
4. Add the following additional uncertainty with -ST accessory:

Card	$\pm(\mathrm{ppm}$ of range)			$\pm(\mathrm{ppm}$ of reading + ppm of range)			
	$\mathbf{1 0 0 \mathrm { mV }}$	$\mathbf{1 V}$	$\mathbf{1 0 V}$	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	$\mathbf{1 0} \mathrm{M} \Omega$	$\mathbf{1 0 0} \mathrm{M} \Omega$
$\mathbf{3 7 2 0 , 3 7 2 1 , 3 7 2 2 , 3 7 3 0}$	45	4.5	-	$8+5$	$8+0.5$	-	-
3723	60	6.0	-	$8+6$	$8+0.5$	-	-
3724	45	4.5	-	$8+5$	$80+0.5$	$250+1$	$5000+1$
3731	800	80	8	$8+80$	$40+8$	$0+25$	$0+15$
3732 (Quad 4×28)	200	20	2	$8+20$	$40+2$	$0+7$	$0+4$

5. Specifications are for 4 -wire $\Omega, 1 \Omega-1 \mathrm{k} \Omega$ with offset compensation on. For Series 3700 A plug-in cards, $\mathrm{L}_{\mathrm{Sync}}$ and offset compensation on. 1Ω range is 4 -wire only. 3724 card $1 \mathrm{k} \Omega-100 \mathrm{M} \Omega$ ranges only. 3731 card: $100 \Omega-100 \mathrm{M} \Omega$ ranges only
For 2-wire Ω specifications, add the following to "ppm of range" uncertainty:

DMM Connect Relays	Rel Enable	Rear Panel Connector or 3700A Card	3724 Card	3731 Card
CONNECT_ALL	ON	$100 \mathrm{~m} \Omega$	$500 \mathrm{~m} \Omega$	$900 \mathrm{~m} \Omega$
CONNECT_ALL	OFF	1.5Ω	64Ω	2.3Ω
CONNECT_TWO_WIRE	ON	$700 \mathrm{~m} \Omega$	1.2Ω	1.5Ω
CONNECT_TWO_WIRE	OFF	1.5Ω	64Ω	2.3Ω

6. Test current with dmm.offsetcompensation=OFF, $\pm 5 \%$,
7. Add the following to "ppm of reading" uncertainty when using Series 3700A Plug-in Cards in Operating Environment $\geq 50 \%$ RH.

Card	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$
$3720,3721,3724,3730,3731,3732$ (Quad 4×28) with MTC D-Shell connector	1 ppm	10 ppm	0.01%	0.1%	1%
$3720,3721,3724,3730,3731,3732$ (Quad $4 \times 28)$ with -ST screw terminal module	10 ppm	100 ppm	0.1%	1%	10%
3722 and 3723	10 ppm	100 ppm	0.1%	1%	10%

Series 3700A Plug-in Cards Operating Environment: Specified for 0° to $50^{\circ} \mathrm{C}, \leq 70 \%$ RH at $35^{\circ} \mathrm{C}$.
8. Dry-Ckt Ω is 4 -wire only. Specifications with offset compensation and $L_{\text {SYNC }}$ on.

Card	Ranges
3720,3721 , and 3730	$1 \Omega-2 \mathrm{k} \Omega$
3722,3723 , and 3732	$10 \Omega-2 \mathrm{k} \Omega$
3724	$1 \mathrm{k} \Omega-2 \mathrm{k} \Omega$
3731	$100 \Omega-2 \mathrm{k} \Omega$

9. Includes Analog Backplane 15-pin rear panel connector. For 3721, refer to DC Current table for additional uncertainties.
10. For $L_{\text {SYNC }}$ On, line frequency $\pm 0.1 \%$.

	nPLC	5	1	<0.2	<0.01
$L_{\text {SYNC }}$ On	NMRR	110 dB	90 dB	45 dB	-
$\mathrm{L}_{\text {SYNC }}$ Off	NMRR	$60 \mathrm{~dB}, \pm 2 \mathrm{~dB}$	$60 \mathrm{~dB}, \pm 2 \mathrm{~dB}$	-	-

11. For $1 \mathrm{k} \Omega$ unbalance in LO lead. AC CMRR is 70 dB .

nPLC	5	1	0.2^{12}	≤ 0.2
CMRR	140 dB	140 dB	120 dB	80 dB

12. For $\mathrm{L}_{\mathrm{SYNC}} \mathrm{On}$.
13. Reading rates are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions dmm.reset("all"), Autorange off, dmm.autodelay=dmm.OFF, dmm.opendetector=dmm.OFF, format. data. $=$ format.SREAL. Ranges as follows: $\mathrm{DCV}=10 \mathrm{~V}, 2 \mathrm{~W} \Omega / 4 \mathrm{~W} \Omega=1 \mathrm{k} \Omega, \mathrm{DCl}=1 \mathrm{~mA}$, Dry-Ckt $\Omega=10 \Omega, \mathrm{ACl}=1 \mathrm{~mA}$, and $\mathrm{ACV}=1 \mathrm{~V}$. For Dry-Ckt Ω with Offset Comp OFF: $2 \mathrm{k} \Omega, 60 \mathrm{rdg} / \mathrm{s}$ max. Dry-Ckt Ω with Offset Comp ON $2 \mathrm{k} \Omega, 29.5 \mathrm{rdg} / \mathrm{s}$ max. For temperature reading rates use DCV for T/C and $2 \mathrm{~W} \Omega$ for Thermistor. Speeds are typical and include measurements and data transfer out the Ethernet, GPIB, or USB.
14. DMM configured for single reading, dmm.measurecount=1, and print(dmm.measure()). May require additional settling delays for full accuracy, depending on measurement configuration
15. DMM configured for multisample readings and single buffer transfer, dmm.measurecount=1000, buf=dmm.makebuffer(1000), dmm.measure(buf), and printbuffer(1,1000,buf).
16. dmm.autozero=dmm.ON. RMS noise using low thermal short for DCV, $2 \mathrm{~W} \Omega, 4 \mathrm{~W} \Omega$, and Dry-Ckt Ω. For DCI, dmm.connect=dmm.CONNECT_NONE or 0 . For RTD, noise using low thermal 190Ω precision resistor. Includes 3721 card accuracies. RMS noise values are typical.
17. For DCV or $2 W \Omega$ to Frequency or Period, dmm.nplc=0.2 and dmm.aperture $=0.01 \mathrm{sec}$. For ACl or ACV , dmm.detectorbandwidth=300. For ACl or ACV with dmm .autodelay=dmm.ON, best speed is 65 ms .
18. Speeds are within same multiplexer bank. Add an additional 8 ms when changing banks or slots.
19. When properly zeroed using REL function.

AC Specifications

Function	Range ${ }^{1}$	Resolution	Calibration Cycle	Accuracy: \pm (\% of reading $+\%$ of range), $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$					
				$3 \mathrm{Hz-5} \mathrm{~Hz}$	$5 \mathrm{Hz-10} \mathrm{~Hz}$	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 20 \mathrm{kHz} \end{aligned}$	20 kHz- 50 kHz	$\begin{aligned} & 50 \text { kHz- } \\ & 100 \text { kHz } \end{aligned}$	$\begin{aligned} & 100 \mathrm{kHz}- \\ & 300 \mathrm{kHz} \end{aligned}$
Voltage ${ }^{2}$	100.0000 mV	$0.1 \mu \mathrm{~V}$	$\begin{gathered} 90 \text { Day } \\ (100 \mathrm{mV}-100 \mathrm{~V}) \end{gathered}$	$1.0+0.03$	$0.30+0.03$	$0.05+0.03$	$0.11+0.05$	$0.6+0.08$	$4.0+0.5$
	1.000000 V	$1 \mu \mathrm{~V}$							
	10.00000 V	$10 \mu \mathrm{~V}$	$\begin{gathered} 1 \text { Year } \\ (100 \mathrm{mV}-100 \mathrm{~V}) \end{gathered}$	$1.0+0.03$	$0.30+0.03$	$0.06+0.03$	$0.12+0.05$	$0.6+0.08$	$4.0+0.5$
	100.0000 V	$100 \mu \mathrm{~V}$							
	300.0000 V	1 mV	90 Day	$1.0+0.05$	$0.30+0.05$	$0.05+0.05$	$0.11+0.08$	$0.6+0.11$	$4.0+0.8$
	300.0000 V	1 mV	1 Year	$1.0+0.05$	$0.30+0.05$	$0.06+0.05$	$0.12+0.08$	$0.6+0.11$	$4.0+0.8$
			Temp. Coeff. $/{ }^{\circ} \mathrm{C}^{3}$ (all ranges)	$\begin{gathered} 0.010+ \\ 0.003 \end{gathered}$	$\begin{gathered} 0.030+ \\ 0.003 \end{gathered}$	$\begin{gathered} 0.005+ \\ 0.003 \end{gathered}$	$\begin{gathered} 0.006+ \\ 0.005 \end{gathered}$	$\begin{aligned} & 0.01+ \\ & 0.006 \end{aligned}$	$\begin{gathered} 0.03+ \\ 0.01 \end{gathered}$
Current ${ }^{2}$				$3 \mathrm{Hz-5} \mathrm{~Hz}$	$5 \mathrm{Hz-10} \mathrm{~Hz}$	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 2 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 2 \mathrm{kHz}- \\ 5 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 5 \mathrm{kHz}- \\ & 10 \mathrm{kHz} \end{aligned}$	
	$1.000000 \mathrm{~mA}^{\text { }}$	1 nA	90 Day/1 Year	$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	10.00000 mA	10 nA		$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	100.0000 mA	100 nA		$1.0+0.04$	$0.30+0.04$	$0.08+0.03$	$0.09+0.03$	$0.09+0.03$	
	1.000000 A	$1 \mu \mathrm{~A}$		$1.0+0.04$	$0.30+0.04$	$0.20+0.04$	$0.88+0.04$	$2.0+0.04$	
	3.000000 A	$10 \mu \mathrm{~A}$		$1.0+0.05$	$0.30+0.05$	$0.20+0.05$	$0.88+0.05$	$2.0+0.05$	
			Temp. Coeff. $/{ }^{\circ} \mathrm{C}^{3}$ (all ranges)	$\begin{aligned} & 0.10+ \\ & 0.004 \end{aligned}$	$\begin{gathered} 0.030+ \\ 0.004 \end{gathered}$	$\begin{gathered} 0.005+ \\ 0.003 \end{gathered}$	$\begin{gathered} 0.006+ \\ 0.005 \end{gathered}$	$\begin{gathered} 0.006+ \\ 0.005 \end{gathered}$	
Frequency ${ }^{4}$ and Period				Accuracy $\pm(\mathrm{ppm}$ of reading + offset ppm)					
				$\begin{gathered} 3 \mathrm{~Hz}- \\ 500 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 3 \mathrm{~Hz}- \\ 500 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 333 \mathrm{~ms}- \\ 2 \mu \mathrm{~s} \end{gathered}$			
	$\begin{gathered} 100.0000 \mathrm{mV} \\ \mathrm{to} \\ 300.0000 \mathrm{~V} \end{gathered}$	0.333 ppm	90 Day/1 Year (all ranges)	$80+0.333$	$80+0.333$	(0.25 s gate)			
		3.33 ppm		$80+3.33$	$80+3.33$	(100 ms gate)			
		33.3 ppm		$80+33.3$	$80+33.3$	(10 ms gate)			

Additional Uncertainty \pm (\% of reading)

Low Frequency Uncertainty	Detector Bandwidth		
	$3(3 \mathrm{~Hz}-$ $300 \mathrm{kHz})$	$30(30 \mathrm{~Hz}-$ $300 \mathrm{kHz})$	$300(300 \mathrm{~Hz}-$ $300 \mathrm{kHz})$
	0	0.3	-
$30 \mathrm{~Hz}-50 \mathrm{~Hz}$	0	0	-
$50 \mathrm{~Hz}-100 \mathrm{~Hz}$	0	0	4.0
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$	0	0	0.72
$200 \mathrm{~Hz}-300 \mathrm{~Hz}$	0	0	0.18
$300 \mathrm{~Hz}-500 \mathrm{~Hz}$	0	0	0.07
$>500 \mathrm{~Hz}$	0	0	0

Additional Uncertainty \pm (\% of reading)	Detector Bandwidth	Crest Factor ${ }^{5}$ Maximum Crest Factor: 5 at full-scale			
		1-2	2-3	3-4	4-5
$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	3	0.50	1.20	1.30	1.40
$10 \mathrm{~Hz}-30 \mathrm{~Hz}$	3	0.20	0.30	0.60	0.90
$30 \mathrm{~Hz}-100 \mathrm{~Hz}$	3 or 30	0.20	0.30	0.60	0.90
$>100 \mathrm{~Hz}$	3 or 30	0.05	0.15	0.30	0.40
$300 \mathrm{~Hz}-500 \mathrm{~Hz}$	300 only	0.50	1.20	1.30	1.40
$\geq 500 \mathrm{~Hz}$	300 only	0.05	0.15	0.30	0.40

AC Speeds

Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz}$) Operation

Function	Detector Bandwidth	NPLC	Aperture (ms)	Measurements into Buffer ${ }^{\text {(}}$ (rdg/s)			Measurement to PC ${ }^{9}$ ($\mathrm{ms} / \mathrm{rdg}$)		
				Digits	Azero On	Azero Off	Ethernet	GPIB	USB
ACI / ACV	3	N/A	N/A	61/2	0.45 (0.45)	N/A	2150 (2150)	2150 (2150)	2150 (2150)
	30	N/A	N/A	$61 / 2$	2.5 (2.5)	N/A	400 (400)	400 (400)	400 (400)
	300	$1.0{ }^{10}$	16.67 (20)	$61 / 2$	42 (33)	59.5 (50)	19.4 (22.7)	19.5 (22.8)	19.8 (23.1)
	300	$0.2{ }^{10}$	3.33 (4.0)	61/2	120 (100)	295 (235)	7.6 (8.3)	6.2 (6.8)	6.4 (7.0)
	300	$0.06{ }^{11}$	1.0 (1.2)	$51 / 2$	170 (165)	935 (750)	1.40 (1.80)	1.50 (1.80)	1.60 (2.30)
	300	$0.006{ }^{11}$	0.100 (0.120)	$41 / 2$	218 (215)	6,200 (5,500)	0.55 (0.57)	0.65 (0.67)	0.75 (0.77)
	300	0.0005^{11}	0.0083 (0.001)	$31 / 2$	218 (215)	14,600 (14,250)	0.50 (0.5)	0.60 (0.60)	0.70 (0.70)
Frequency/ Period	N/A	N/A	10-273	N/A	$\begin{gathered} \hline 2 \times \text { input } \\ \text { period } \\ + \text { gate time } \\ \hline \end{gathered}$	N/A	$2 \times$ input period + gate time +2.7 ms	$2 \times$ input period + gate time +2.8 ms	$2 \times$ input period + gate time +3.1 ms

AC Measurement Characteristics

AC Volts

Measurement Method	AC-coupled, True RMS.					
Input Impedance	$1 \mathrm{M} \Omega \pm 2 \% / /$ by <150 pF.					
Input Protection	300 VDC or 300 Vrms rear inputs or $37 \times x$ cards.					
AC Current						
Measurement Method	AC-coupled, True RMS.					
	Range	3 A	1 A	100 mA	10 mA	1 mA
	Shunt Resistance guaranteed by design	0.05Ω	0.05Ω	1.0Ω	10Ω	100Ω
	Burden Voltage Rear Panel	<1.75 V rms	<0.55 V rms	$<0.4 \mathrm{~V} \mathrm{rms}$	< 150 mV rms	< 125 mV rms
	Burden Voltage 3721 Card	$<2.4 \mathrm{~V}$ rms	$<1.0 \mathrm{~V} \mathrm{rms}$	$<0.6 \mathrm{~V} \mathrm{rms}$	<200 mV rms	< 130 mV rms

Input Protection

3 A, 250 V fuse.

Frequency and Period

Measurement Method	Reciprocal Counting technique.
Gate Time	dmm.aperture $=0.273 \rightarrow 0.01$. Default 0.01 s.
AC General	70 dB.
AC CMRR	
Volt•Hertz Product	$\leq 8 \times 10^{7}$ Volt•Hz (guaranteed by design), $\leq 2.1 \times 10^{7}$ Volt•Hz verified. Input frequency verified for $\leq 3 \times 10^{5} \mathrm{~Hz}$.

AC Notes

1. 20% overrange on AC functions except 1% on 300 V and 3.33% on 3 A . Default resolution is $51 / 2$ digits, maximum useable resolution is $61 / 2$ with $71 / 2$ digits programmable.
2. Specification are for Detector Bandwidth 3 and sinewave inputs $>5 \%$ of range. Detector Bandwidth 3 and 30 are multi-sample A/D conversions. Detector bandwidth 300 is a single A/D conversion, programmable from 0.0005 PLC to 15 PLC. Default condition set to 1 PLC.
3. Applies to $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$.
4. Specified for square wave inputs. Input signal must be $>10 \%$ of ACV range. If input is $<20 \mathrm{mV}$ on the 100 mV range then the frequency must be $>10 \mathrm{~Hz}$. For sinewave inputs, frequency must be $>100 \mathrm{~Hz}$.
5. Applies to non-sinewave inputs $5 \mathrm{~Hz} \rightarrow 10 \mathrm{kHz}$, and DC content $\leq 3 \%$ of range.
6. For $1 \mathrm{k} \Omega$ unbalance in $L O$ lead.
7. For $3721,1 \mathrm{~mA} \mathrm{ACl}$, add 0.05% to "of reading" uncertainty from $250 \mathrm{~Hz} \rightarrow 10 \mathrm{kHz}$.
8. Shunt resistance guaranteed by design.
9. Reading rates are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions dmm.reset("all"), Autorange off, dmm.autodelay=dmm.OFF, dmm.opendetector=dmm.OFF, format. data.=format.SREAL. Ranges as follows: $\mathrm{DCV}=10 \mathrm{~V}, 2 \mathrm{~W} \Omega / 4 \mathrm{~W} \Omega=1 \mathrm{k} \Omega, \mathrm{DCl}=1 \mathrm{~mA}$, Dry-Ckt $\Omega=10 \Omega, \mathrm{ACl}=1 \mathrm{~mA}$, and $\mathrm{ACV}=1 \mathrm{~V}$. For Dry-Ckt Ω with Offset Comp OFF $2 \mathrm{k} \Omega$, $60 \mathrm{rdg} / \mathrm{s}$ max. Dry-Ckt Ω with Offset Comp ON $2 \mathrm{k} \Omega, 29.5 \mathrm{rdg} / \mathrm{s}$ max. For temperature reading rates use DCV for T/C and $2 \mathrm{~W} \Omega$ for Thermistor. Speeds are typical and include measurements and data transfer out the Ethernet, GPIB, or USB.
10. DMM configured for single reading, dmm.measurecount=1, and print(dmm.measure()). May require additional settling delays for full accuracy, depending on measurement configuration.
11. DMM configured for multisample readings and single buffer transfer, dmm.measurecount=1000, buf=dmm.makebuffer(1000), dmm.measure(buf), and printbuffer(1,1000,buf).

General

Expansion Slots	6.
Power Line	Universal, 100 V to 240 V.
Line Frequency	50 Hz and 60 Hz , automatically sensed at power-up.
Power Consumption	28 VA with DMM and display, up to 140 VA with six 37 xx cards.
Real Time Clock	Battery backed, 10 years typical life.
EMC	Conforms to European Union EMC Directive.
Safety	Conforms to European Union Low Voltage Directive.
Vibration	MIL-PRF-28800F Class 3, Random.
Warm-Up	2 hours to rated accuracy.
Digital I/O	25 -pin female D-shell.

	I/O 1-9	I/O 10-14	Vext
ISINK, max.	5 mA	250 mA	-
ISOURCE, max.	$960 \mu \mathrm{~A}$	$980 \mu \mathrm{~A}$	-
Absolute VIN	5.25 V to -0.25 V	5.25 V to -0.25 V	5 V to 33 V
VIH min	2.2 V	2.2 V	-
VIL max	0.7 V	0.7 V	-
VOL max at 5 mA Isink	0.7 V	0.7 V	-
VOL max at Isink max	-	2.3 V	-
VOH min, 0.4 mA source	2.7 V	2.4 V	-
Min VIN pulse	$2 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	-
Min VO pulse	$1 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	-

I/O 10-14

Triggering and Memory	
Window Filter Sensitivity	0.01\%, 0.1\%, 1\%, 10\%, or full-scale of range (none).
Trigger Delay	0 to 99 hrs. ($10 \mu \mathrm{~s} \mathrm{step} \mathrm{size)}$.
External Trigger Delay	<10 $\mu \mathrm{s}$.
Memory	Up to 650,000 time-stamped readings with Web page disabled. Additional memory available with external "thumb drive."
Non-volatile Memory	Single user save setup, with up to 75 DMM configurations and ≥ 600 channel patterns (dependent on name length, DMM function and configuration, and pattern image size). Additional memory available with external "thumb drive."
Math Functions	Rel, dB , Limit Test, \%, $1 / \mathrm{x}$, and $\mathrm{mX}+\mathrm{b}$ with user defined displayed.
Remote Interface	
Ethernet	RJ-45 connector, LXI Class B Version 2, 10/100BT, no auto MDIX.
GPIB	IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology.
USB Device (rear panel, type B)	
	Full speed, USBTMC compliant.
USB Host (front panel, type A)	
	USB 2.0, support for thumb drives.
LXI Compliance	LXI Class B Version 2 with IEEE 1588 precision time protocol.
LXI Timing (applies to scanning) and Specification	
Receive LAN[0-7] Event Delay	
	n / s (not specified) min., $800 \mu \mathrm{~s}$ typ., n / s max.
Alarm to Trigger Delay	25μ s min., 50μ styp., n/s max.
Generate LAN[0-7] Event	n / s min., $800 \mu \mathrm{~s}$ typ., n / s max. (minimums are probabilistic and represent a 95% confidence factor).
Clock Accuracy	25 ppm.
Synchronization Accuracy	<150 ns (probabilistic and represents a 95\% confidence factor).
Timestamp Accuracy	$100 \mu \mathrm{~s}$.
Timestamp Resolution	20 ns .
Language	Embedded Test Script Processor (TSP) accessible from any host interface. Responds to individual Instrument Control Library (ICL) commands. Responds to high-speed test scripts comprised of ICL commands and Test Script Language (TSL) statements (e.g., branching, looping, math, etc.). Able to execute high-speed test scripts stored in memory without host intervention.
IP Configuration	Static or DHCP.
Password Protection	11 characters
Minimum PC Hardware	Intel Pentium 3, 800 MHz , 512 Mbyte RAM, 210 Mbyte disk space or better.
Operating Systems/Software	Windows ${ }^{\circledR} 2000$ and XP compatible, supports Web browsers with Java plug-in (requires Java plug-in 1.6 or higher). Web pages served by 3706A.
Operating Environment	Specified for 0° to $50^{\circ} \mathrm{C}, \leq 80 \%$ RH at $35^{\circ} \mathrm{C}$, altitude up to 2000 meters.
Storage Environment	-40° to $70^{\circ} \mathrm{C}$.
Dimensions	
Rack Mounted	89 mm high $\times 483 \mathrm{~mm}$ wide $\times 457 \mathrm{~mm}$ deep ($3.5 \mathrm{in} . \times 19 \mathrm{in} . \times 18 \mathrm{in}$.).
Bench Configuration (includes handle and feet)	
	104 mm high $\times 483 \mathrm{~mm}$ wide $\times 457 \mathrm{~mm}$ deep ($4.125 \mathrm{in} . \times 19 \mathrm{in} . \times 18 \mathrm{in}$.)
Shipping Weight	13 kg (28 lbs).

Ordering Information

Mainframes	
3706A	Six-Slot System Switch with High Performance DMM
3706A-NFP	Six-Slot System Switch with High Performance DMM, without front panel display and keypad
3706A-S	Six-Slot System Switch
3706A-SNFP	Six-Slot System Switch, without front panel display and keypad

Plug-in Cards

3720	Dual 1×30 Multiplexer Card (Auto CJC when used with 3720-ST)
3721	Dual 1×20 Multiplexer Card (Auto CJC when used with 3721-ST)
3722	Dual 1×48, High Density, Multiplexer Card
3723	Dual 1×30, High Speed, Reed Relay Multiplexer Card
3724	Dual 1×30 FET Multiplexer Card
3730	6×16, High Density, Matrix Card
3731	6×16 High Speed, Reed Relay Matrix Card
3732	Quad 4×28, Ultra-High Density, Reed Relay Matrix Card
3740	32 Channel Isolated Switch Card 3750Multifunction Control Card 3760 10-Channel High Current Multiplexer Card 3761 10-Channel Low Current Multiplexer Card 3762 10-Channel High Voltage Multiplexer Card 3765 Hall Effect Card

Supplied Accessories

Test Script Builder Software Suite CD
Ethernet Crossover Cable (CA-180-3A)
Series 3700A Product CD (includes LabVIEW ${ }^{\circledast}$, IVI C, and IVI.COM drivers)

Available Accessories

GPIB Interfaces and Cables

$7007-1$	Shielded GPIB Cable, $1 \mathrm{~m}(3.5 \mathrm{ft})$
$7007-2$	Shielded GPIB Cable, $2 \mathrm{~m}(6.6 \mathrm{ft})$
KPCI-488LPA	IEEE-488 Interface/Controller for the PCI Bus
KUSB-488B	IEEE-488 USB-to-GPIB Interface Adapter
Digital I/O, Trigger Link,	
$\mathbf{2 6 0 0 - T L I N K}$	Trigger I/O to Trigger Link Interface Cable, $1 \mathrm{~m}(3.3 \mathrm{ft})$
CA-126-1	Digital I/O and Trigger Cable, $1.5 \mathrm{~m}(4.9 \mathrm{ft})$
CA-180-3A	CAT5 Crossover Cable for TSP-Link

Multimeter Connectors	
$3706-$ BAN	DMM Adapter Cable, 15-pin D-sub to banana jacks, $1.4 \mathrm{~m}(4.6 \mathrm{ft})$
$3706-$ BKPL	Analog Backplane Extender Board, 15-pin D-sub to terminal block
$3706-$ TLK	Test Lead Kit, includes 3706-BAN and plug-in test lead accessories
8620	Shorting Plug

Rack Mount Kit
4288-10 Fixed Rear Rack Mount Kit

Available Services

Mainframe 3706A and 3706A-NFP

3706A-3Y-EW	1 Year Factory Warranty Extended to 3 Years
3706A-5Y-EW	1 Year Factory Warranty Extended to 5 Years
C/3706A-3Y-STD	Calibration Contract, 3 Years, Standard Calibration ${ }^{\star}$
C/3706A-3Y-DATA	Calibration Contract, 3 Years, Z540 Compliant Calibration with Data*
C/3706A-3Y-ISO	Calibration Contract, 3 Years, ISO 17025 Accredited Calibration *
C/3706A-5Y-STD	Calibration Contract, 5 Years, Standard Calibration
C/3706A-5Y-DATA	Calibration Contract, 5 Years, Z540 Compliant Calibration with Data*
C/3706A-5Y-ISO	Calibration Contract, 5 Years, ISO 17025 Accredited Calibration* *

Mainframe 3706A-S and 3706A-SNFP

3706 A-S-3Y-EW	1 Year Factory Warranty Extended to 3 Years
$3706 A-S-5 Y-E W$	1 Year Factory Warranty Extended to 5 Years

Software Services
 System Development or Implementation

Other service contracts are available; please contact us for details.
*Not available in all countries.

Plug-in Cards for Series 3700A Mainframes

- Multiplexer, matrix, and I/O cards
- Relay closures automatically counted and stored in each card's onboard memory
- Unlimited contact life with solid-state relay (3724)
- Automatic CJC for temperature measurements when used with screw terminal accessory $(3720,3721,3724)$

Specifications for Plug-In Cards

Additional Series 3700A cards are currently in development. For a current list of cards and specifications, visit tek.com.

	No. of Channels	Card Configuration	Type of Relay	Contact Configuration	Max. Voltage	Max. Current Switched	Comments
3720	60 (Dual 1×30)	Multiplexer	Latching electromechanical	2 Form A	300 V	1 A	2 independent 1×30 multiplexers. Automatic temperature reference when used with screw terminal accessory (3720-ST)
3721	40 (dual 1×20)	Multiplexer	Latching electromechanical	2 Form A	$\begin{gathered} 300 \mathrm{~V} \\ \text { (ch } 1-40 \text {), } \\ 60 \mathrm{~V} \\ \text { (ch } 41-42 \text {) } \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ (\mathrm{ch} 1-40) \text {, } \\ 3 \mathrm{~A} \\ \text { (ch 41-42) } \end{gathered}$	2 independent 1×20 multiplexers. Automatic temperature reference when used with screw terminal accessory (3721-ST)
3722	96 (dual 1×48)	Multiplexer	Latching electromechanical	2 Form A	300 V	1 A	2 independent 1×48 multiplexers
3723	60 (dual 1×30) or 120 single-pole (dual 1×60)	Multiplexer	Dry reed	1 Form A	200 V	1 A	2 independent 1×30 multiplexers
3724	60 (dual 1×30)	Multiplexer	FET solid-state	2 Form A	200 V	0.1 A	2 independent 1×30 multiplexers. Automatic temperature reference when used with screw terminal accessory (3724-ST)
3730	6×16	Matrix	Latching electromechanical	2 Form A	300 V	1 A	Columns can be expanded through the backplane or isolated by relays
3731	6×16	Matrix	Dry reed	2 Form A	200 V	1 A	Relay actuation time of 0.5 ms . Columns can be expanded through the backplane or isolated by relays
3732	448 crosspoints (Quad 4×28)	Matrix	Dry reed	1 Form A	200 V	0.75 A	Banks can be connected together via bank configuration relays to create a single 4×112 or dual 4×56 matrix. Analog backplane relays also included for card-to-card expansion. Row expansion with 3732-ST-R accessory to create a dual 8×28 or single 16×28 matrix.
3740	32	Independent	Latching electromechanical	28 Form C, 4 Form A	$\begin{aligned} & \hline 300 \mathrm{VDC/} \\ & 250 \mathrm{VAC} \\ & (\text { Form A) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \text { A (Form C), } \\ & 7 \text { A (Form A) } \end{aligned}$	32 general purpose independent channels.
3750	40 digital I/O, 4 counter/totalizers, and 2 isolated analog outputs	Independent	N/A	N/A	N/A	N/A	All-in-one card design. 40 bidirectional I/O. Four 32bit counter/totalizers. 2 programmable analog (V or I) outputs.
3760	10	Multiplexer	Nonlatching electromechanical	2 Form C	500 V	5 A	Single 1×10 high current multiplexer
3761	10	Multiplexer	Dry reed	Form A	30 V	100 mA	Single 1×10 low current multiplexer
3762	10	Multiplexer	Dry reed	2 Form A	1000 V	0.5 A	Single 1×10 high voltage multiplexer
3765	4×5	Matrix	Nonlatching electromechanical and dry reed	Form A	8 V	100 mA	Specialty 4×5 matrix for Hall Effect and van der Pauw measurements.

Plug-in Card Accessories

	Cables	Screw Terminal Block	Connector Kits	Tools
3720	3720-MTC-1.5, 3720-MTC-3	3720-ST	3791-KIT78-R	3791-CIT
3721	3721-MTC-1.5, 3721-MTC-3	3721-ST	3790-KIT50-R	
3722	3722-MTC-1.5, 3722-MTC-1.5/MM, 3722-MTC-3, 3722-MTC-3/MM		$\begin{aligned} & \text { 3792-KIT104-R, } \\ & \text { 3792-KIT104-R/F } \end{aligned}$	3791-CIT
3723	3720-MTC-1.5, 3720-MTC-3	3723-ST, 3723-ST-1	3791-KIT78-R	3791-CIT
3724	3720-MTC-1.5, 3720-MTC-3	3724-ST	3791-KIT78-R	3791-CIT
3730	3721-MTC-1.5, 3721-MTC-3	3730-ST	3790-KIT50-R	
3731	3721-MTC-1.5, 3721-MTC-3	3731-ST	3790-KIT50-R	
3732	3732-MTC-1.5, 3732-MTC-3	3732-ST-C, 3732-ST-R	3791-KIT78-R	3791-CIT
3740	3721-MTC-1.5, 3721-MTC-3	3740-ST	3790-KIT50-R	
3750	3721-MTC-1.5, 3721-MTC-3	3750-ST	3790-KIT50-R	

3720 Dual 1×30 Multiplexer Card

60 differential channels, automatic CJC w/3720-ST accessory

The 3720 offers two independent banks of 1×30 two-pole multiplexers. It is ideal for general purpose switching, including temperature measurements. The two banks can automatically be connected to the Series 3700A mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the card to a single 1×60 two-pole multiplexer or to enable card-to-card expansion for even larger configurations.

Other features of the 3720 include its ability to be reconfigured to coordinated four-pole operation for additional measurement flexibility. Furthermore, the 3720 supports thermocouple-type temperature measurements when used with the 3720-ST (screw terminal) accessory providing automatic cold junction compensation (CJC).

Key Features

- 60 two-pole channels or 30 four-pole channels for general purpose switching
- Automatic CJC for temperature measurements when used with 3720-ST accessory
- Analog backplane connection relays provide easy bank and card interconnections
- 300 V, 1 A switched or 2 A carry signal capacity; $60 \Omega, 125 \mathrm{VA}$
- Screw terminal connections provided with removable 3720-ST accessory
- Relay closures stored in onboard memory
- Latching electromechanical relays

The 3720 uses two 78-pin male D-sub connectors for signal connections. For screw terminal or automatic CJC, use the detachable 3720-ST accessory.

Multiplexer Bank 1

Output 1

Multiplexer Bank 2

Output 2

Channel 31

Channel 60

Channels 32-59

Specifications

Multiplexer Configuration	Two independent 1×30 2-pole multiplexers. Banks can be isolated from the backplane by relays. Card can be configured for 2 and 4 wire.			
Contact Configuration	2-pole form A.			
Connector Type	Two 78-pin male D-shells.			
3720-ST Screw Terminal Option	\#22 AWG typical wire size with 0.062 inch O.D. 124 conductors maximum. \#16 AWG maximum wire size with 0.092 inch O.D. 36 conductors per card maximum.			
Maximum Signal Level	Channels 1-60: 300 V DC or RMS, 1 A switched (2 A carry), $60 \Omega, 125 \mathrm{VA}$.			
Common Mode Voltage	300 V DC or RMS between any terminal and chassis.			
Volt-Hertz Limit	8×10^{7}.			
Contact Life	$>10^{5}$ operations at maximum signal level. $>10^{8}$ operations no load. ${ }^{1}$			
			Dual 1×30^{3}	Single $1 \times 60^{2,3}$
	Channel Resistanc	d of contact life)	$<1.0 \Omega$	$<1.5 \Omega$
	Contact Potential (ntial)	$< \pm 1 \mu \mathrm{~V}$	$< \pm 3 \mu \mathrm{~V}$
	Offset Current		< $\pm 250 \mathrm{pA}$	$< \pm 250 \mathrm{pA}$
		Differential	$10^{9} \Omega, 250 \mathrm{pF}$	$10^{9} \Omega, 450 \mathrm{pF}$
		Bank-Bank	$10^{10} \Omega, 75 \mathrm{pF}$	-
	Isolation	Channel-Channel	$10^{9} \Omega, 75 \mathrm{pF}$	$10^{9} \Omega, 75 \mathrm{pF}$
		Common Mode	$10^{9} \Omega, 200 \mathrm{pF}$	$10^{9} \Omega, 400 \mathrm{pF}$
		300 kHz		<-55 dB
	Crosstalk	1 MHz		<-50 dB
	Channel-Channel	20 MHz		$<-20 \mathrm{~dB}$
		Bandwidth		10 MHz

Typical Scanning Speeds

Switch Only ${ }^{4}$ Sequential scanning, single channel, immediate trigger advance $>120 \mathrm{ch} / \mathrm{s}$.

Notes

1. Open detector enabled during thermocouple measurements. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$
2. 3706A mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed
3. Connections made using 3720-ST accessory.
4. Scanning script local to 3706A mainframe, within same bank, and break before make switching.
5. 3706A mainframe with autorange off, limits off, dmm.autozero=0, dmm.autodelay=0, $41 / 2$ digits (NPLC=0.006), for ACV dmm.detectorbandwidth=300, for OHMs dmm offsetcompensation=off, dmm.opendetector=off. Scanning script local to mainframe, sequential scan within same bank (2-pole) or card (4-pole), and break before make switching.

General

Actuation Time	4 ms.
Temperature Accuracy using Automatic CJC with 3720-ST Accessory	
	$1^{\circ} \mathrm{C}$ for J, K, T and E types (see mainframe specification for details).
Relay Type	Latching electromechanical.
Relay Drive Scheme	Matrix.
Interlock	Backplane relays disabled when interlock connection is removed.
Operating Environment	Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
Storage Environment	-25° to $65^{\circ} \mathrm{C}$.
Weight	2.5 lbs.
Safety	Conforms to European Union Directive $73 / 23 / E E C$, EN61010-1.
EMC	Conforms to European Union Directive 2004/108/EC, EN61326-1.

Ordering Information
3720
Dual 1×30 Multiplexer Card

Available Accessories

3720-MTC-1.5	78-pin D-sub Female to Male Cable, $1.5 \mathrm{~m}(5 \mathrm{ft})$.
$\mathbf{3 7 2 0 - M T C - 3}$	78-pin D-sub Female to Male Cable, $3 \mathrm{~m}(10 \mathrm{ft})$.
$\mathbf{3 7 2 0 - S T}$	Screw Terminal Block (required for auto CJC thermocouple measurements)
$\mathbf{3 7 9 1 - C I T}$	Contact Insertion and Extraction Tool
$\mathbf{3 7 9 1 - K I T 7 8 - R ~}$	78-pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 156 solder-cup contacts)
7401	Type K Thermocouple Wire (100 ft.)

Available Services

3720-3Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
$3720-5 Y-E W-S T D$	1-year factory warranty extended to 5 years from date of shipment
C/3720-3Y-STD	3 (Z540-1 compliant) calibrations within 3 years of purchase*

[^0]
3721 Dual l×30 Multiplexer Card

40 differential channels, automatic CJC w/3721-ST accessory

The 3721 offers two independent banks of 1×20 two-pole multiplexers that are ideal for general purpose switching, including temperature measurements. The two banks can automatically be connected to the Series 3700A mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the 3721 as a single 1×40 two-pole multiplexer or to enable card-to-card expansion for even larger configurations.

Key Features

- 40 two-pole or 20 four-pole channels for general purpose switching
- 2 dedicated channels for current measurements, 3 A capacity
- Automatic CJC for temperature measurements when used with 3721-ST accessory
- 4-wire common side ohms input supports 40 channels of 4 -wire ohms measurements
- Analog backplane connection relays provide easy bank and card interconnections
- $300 \mathrm{~V}, 2$ A switched or 3 A carry signal capacity; $60 \Omega, 125 \mathrm{VA}$
- Latching electromechanical relays

The 3721 provides a number of other features. In addition to the 40 channels, two fused channels are supplied for current measurements. Also, the 3721 includes dedicated inputs that enable 40 channels of four-wire common side ohms measurements. For thermocouple type measurements, automatic cold junction compensation (CJC) is supported when used with the 3721-ST (screw terminal) accessory.

The 3721 uses two 50-pin male D-sub connectors for signal connections. For screw terminal or automatic CJC, use the detachable 3721-ST accessory.

Four-wire common side ohm mode

Two-pole mode

Specifications

Multiplexer Configuration	Two independent 1×202-pole multiplexers. Banks can be connected together via relay creating a single 1×40 multiplexer. Banks can be isolated from the backplane by relays. Card can be configured for common side Ohms measurement via backplane relays. Channel 41-42: Multiplex one of two 2-pole current signals into DMM.
Contact Configuration	2-pole form A.
Connector Type	Two 50-pin male D-shells. Removable screw terminal option.
Maximum Signal Level	Channels 1-40: 300 V DC or RMS, 2 A switched (3 A carry), $60 \Omega, 125$ VA maximum. Channels 41-42: 60 V DC or 30 V rms, 3 A switched, $60 \Omega, 125 \mathrm{VA}$ maximum. Fused $3 \mathrm{~A}, 250 \mathrm{~V}$ rms.
Common Mode Voltage	Channels 1-40: 300V DC or rms between any terminal and chassis.
Volt-Hertz Limit	8×10^{7}.
Contact Life	$>10^{5}$ operations at maximum signal level. $>10^{8}$ operations no load. ${ }^{1}$
Typical Scanning Speeds	
Switch Only ${ }^{4}$	Sequential scanning, single channel, immediate trigger advance $>120 \mathrm{ch} / \mathrm{s}$.
With Measurements Into Memory ${ }^{5}$	
DCV (10 V range) or 2 W Ohms (1 k 2 range)	
Thermocouple	$>110 \mathrm{ch} / \mathrm{s}$.
3 - or 4-Wire RTD	$>100 \mathrm{ch} / \mathrm{s}$.
4-Wire Ohms (1	nge) $>100 \mathrm{ch} / \mathrm{s}$.

ACV (10 V, 400 Hz range) or ACl (1 A, 400 Hz range) $>110 \mathrm{ch} / \mathrm{s}$.

		Dual 1×20^{3}	Single $1 \times 40^{2,3}$
Channel Resistance (end of contact life)		$<1.0 \Omega$	$<1.5 \Omega$
Contact Potential (differential)	$< \pm 1 \mu \mathrm{~V}$	$< \pm 3 \mu \mathrm{~V}$	
Offset Current			
Isolation	Differential	$< \pm 250 \mathrm{pA}$	$< \pm 250 \mathrm{pA}$
	Bank-Bank	$10^{9} \Omega, 280 \mathrm{pF}$	$10^{9} \Omega, 530 \mathrm{pF}$
	Channel-channel	$10^{11} \Omega, 60 \mathrm{pF}$	-
	Common Mode	$10^{9} \Omega, 50 \mathrm{pF}$	$10^{9} \Omega, 50 \mathrm{pF}$
Crosstalk Channel-Channel	300 kHz	$<-60 \mathrm{~dB}$	$<-60 \mathrm{~dB}$
	1 MHz	$<-50 \mathrm{~dB}$	$<-50 \mathrm{~dB}$
	20 MHz	$<-25 \mathrm{~dB}$	$<-15 \mathrm{~dB}$
Bandwidth		28 MHz	9 MHz

Notes

1. Open detector enabled during thermocouple measurements. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$.
2. 3706 A mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed.
3. Connections made using 3721-ST accessory.
4. Scanning script local to 3706A mainframe, within same bank, and break before make switching.
5. 3706A mainframe with autorange off, limits off, dmm.autozero $=0$, dmm. autodelay $=0,41 / 2$ digits (NPLC=0.006), for ACV dmm. detectorbandwidth $=300$, for OHMs dmm. offsetcompensation=off, dmm.opendetector=off. Scanning script local to mainframe, sequential scan within same bank (2-pole) or card (4-pole), and break before make switching.

General

Actuation Time	$4 \mathrm{ms}$.
Temperature Accuracy using Automatic CJC with 3721-ST Accessory	
	$1^{\circ} \mathrm{C}$ for $\mathrm{J}, \mathrm{K}, \mathrm{T}$, and E types (see mainframe specification for details).
Relay Type	Latching electromechanical.
Relay Drive Scheme	Direct.
Interlock	Backplane relays disabled when interlock connection is removed.
Operating Environment	Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
Storage Environment	-25° to $65^{\circ} \mathrm{C}$.
Weight	2.25 Ibs.
Safety	Conforms to European Union Directive $73 / 23 /$ EEC, EN61010-1.
EMC	Conforms to European Union Directive 2004/108/EC, EN61326-1.

Ordering Information

Available Accessories

3721-MTC-1.5	50-pin D-sub Female to Male Cable, $1.5 \mathrm{~m}(5 \mathrm{ft})$.
$\mathbf{3 7 2 1 - M T C - 3}$	50-pin D-sub Female to Male Cable, $3 \mathrm{~m} \mathrm{(10} \mathrm{ft)}$.
$\mathbf{3 7 2 1 - S T}$	Screw Terminal Block (required for auto CJC thermocouple measurements)
$\mathbf{3 7 9 0 - K I T 5 0 - R ~}$	50-pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 100 solder-cup contacts)
7401	Type K Thermocouple Wire (100 ft.)

Available Services

3721-3Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
3721-5Y-EW-STD	1-year factory warranty extended to 5 years from date of shipment
C/3721-3Y-STD	$3(Z 540-1$ compliant) calibrations within 3 years of purchase*

*Not available in all countries

3722 Dual 1×48, High Density, Multiplexer Card

96 differential channels, 300 Volts/1 Amp

The 3722 offers two independent banks of 1×48 two-pole multiplexers, which is ideal for applications that require a high channel count. The two banks can automatically be connected to the Series 3700A mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the card as a single 1×96 two-pole multiplexer or to enable card-to-card expansion for even larger configurations. Another feature of this card is the latching electromechanical relays. They can accommodate 300 V , 1 A switched signal levels.

Key Features

- 96 two-pole or 48 four-pole channels for general purpose measurements
- Analog backplane connection relays provide easy bank and card interconnections
- 300 V, 1 A switched or 2 A carry signal capacity; 60Ω, 125VA
- $1 \mu \mathrm{~V}$ and 100 pA offsets
- 25 MHz bandwidth
- Relay closures stored in onboard memory
- Latching electromechanical relays
- Scan and measure over 110 channels/second

The 3722 uses two 104-pin D-sub connectors for signal connections. A solder style connector kit (3792-KIT104-R) and pre-assembled cables (3722-MTC-1.5 and 3722-MTC-3) are available for card connections.

Specifications

Multiplexer Configuration	Two independent 1×482-pole multiplexers. Banks can be connected together via relays creating a single 1×96 multiplexer. Banks can be isolated from the backplane by relays. Card can be configured for 2-and 4 -wire mode.			
Contact Configuration	2-pole form A.			
Connector Type	Two 104-pin female D-shells.			
Maximum Signal Level	300 V DC or RMS, 1 A switched (2 A carry), $60 \Omega, 125$ VA.			
Common Mode Voltage	300 V DC or RMS between any terminal and chassis.			
Volt-Hertz Limit	8×10^{7}.			
Contact Life	$>10^{5}$ operations at maximum signal level. $>10^{8}$ operations no load. ${ }^{1}$			
			Dual 1×48^{2}	Single 1×96
	Channel Resistance	(end of contact life)	$<1.5 \Omega$	$<2.5 \Omega$
	Contact Potential	ferential)	$< \pm 1 \mu \mathrm{~V}$	$< \pm 2 \mu \mathrm{~V}$
	Offset Current		<100 pA	<100 pA
		Differential	$5 \times 10^{9} \Omega, 200 \mathrm{pF}$	$5 \times 10^{9} \Omega, 400 \mathrm{pF}$
	Isolation	Bank-Bank	$10^{9} \Omega, 50 \mathrm{pF}$	-
	Isolation	Channel-Channel	$10^{9} \Omega, 50 \mathrm{pF}$	$10^{9} \Omega, 50 \mathrm{pF}$
		Common Mode	$10^{10} \Omega, 200 \mathrm{pF}$	$10^{10} \Omega, 400 \mathrm{pF}$
		300 kHz	<-65 dB	<-65 dB
	Crosstalk	1 MHz	$<-55 \mathrm{~dB}$	<-55 dB
	Channel-channel	20 MHz	$<-30 \mathrm{~dB}$	$<-30 \mathrm{~dB}$
		Bandwidth	25 MHz	15 MHz

Typical Scanning Speeds

Switch Only ${ }^{3} \quad$ Sequential scanning, single channel, immediate trigger advance $>120 \mathrm{ch} / \mathrm{s}$.

With Measurements Into Memory ${ }^{4}$

DCV (10 V range) or 2 W	Ohms $(1 \mathrm{k} \Omega$ range) $>110 \mathrm{ch} / \mathrm{s}$.
3- or 4-Wire RTD	$>100 \mathrm{ch} / \mathrm{s}$.

4 -Wire Ohms ($1 \mathrm{k} \Omega$ range) $>100 \mathrm{ch} / \mathrm{s}$.

ACV ($10 \mathrm{~V}, 400 \mathrm{~Hz}$ range)

$>110 \mathrm{ch} / \mathrm{s}$.

Notes

1. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$.
2. 3706A mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed.
3. Scanning script local to 3706A mainframe, within same bank, and break before make switching.
4. 3706A mainframe with autorange off, limits off, dmm.autozero $=0$, dmm.autodelay=0, $41 / 2$ digits (NPLC=.006), for ACV dmm.detectorbandwidth=300, for OHMs dmm offsetcompensation=off. Scanning script local to mainframe, sequential scan within same bank (2-pole) or card (4-pole), and break before make switching.

General

ACTUATION TIME	4 ms.
RELAY TYPE	Latching electromechanical.
RELAY DRIVE SCHEME	Matrix.
OPERATING ENVIRONMENT	Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT	-25° to $65^{\circ} \mathrm{C}$.
WEIGHT	2.5 lbs.
SAFETY	Conforms to European Union Directive $73 / 23 / E E C$, EN61010-1.
EMC	Conforms to European Union Directive 2004/108/EC, EN61326-1.

Ordering Information

3722
Dual 1×48, High Density, Multiplexer Card

Available Accessories

3722-MTC-1.5	104-pin D-sub Male to Female Cable, $1.5 \mathrm{~m}(5 \mathrm{ft})$.
3722-MTC-1.5/MM	104-pin D-sub Male to Male Cable, $1.5 \mathrm{~m}(5 \mathrm{ft}$.)
3722-MTC-3	104-pin D-sub Male to Female Cable, $3 \mathrm{~m}(10 \mathrm{ft}$.)
3722-MTC-3/MM	104-pin D-sub Male to Male Cable, $3 \mathrm{~m}(10 \mathrm{ft})$.
3791-CIT	Contact Insertion and Extraction Tool
3792-KIT104-R	104-pin Male D-sub Connector kit (contains 2 male D-sub connectors with housings and 208 solder-cup contacts)
3792-KIT104-R/F	104-pin Female D-sub Connector kit (contains 2 female D-sub connectors with housings and 208 solder- cup contacts)

Available Services

$3722-3 Y-E W-S T D$	1-year factory warranty extended to 3 years from date of shipment
$3722-5 Y-E W-S T D$	1-year factory warranty extended to 5 years from date of shipment
C/3722-3Y-STD	3 (Z540-1 compliant) calibrations within 3 years of purchase*

*Not available in all countries

3723 Dual 1×30, High Speed, Multiplexer Card

60 differential channels, long life reed relays

The 3723 offers two independent banks of high speed 1×30 two-pole multiplexers that are ideal for high speed scanning applications. The two banks can automatically be connected to the Series 3700A mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the 3723 as a single 1×60 two-pole multiplexer or as a single 1×120 single-pole multiplexer. It also enables card-to-card expansion for even larger configurations.

Single-pole mode

Key Features

- 60 two-pole or 30 four-pole channels for high speed scanning
- 120 channel single-pole mode for one-wire (common side) measurements
- Analog backplane connection relays provide easy bank and card interconnections
- 200 V, 1 A switched or 1.25 A carry signal capacity; 15 W
- Relay actuation time $<0.5 \mathrm{~ms}$
- 20 MHz bandwidth
- Ideal for multi-channel I-V testing with Series 2600B SourceMeter ${ }^{\circledR}$ SMU instruments
- Long life dry reed relays (>109 operations)

By using high speed reed relays with actuation times of less than 0.5 ms , this card can meet demanding throughput applications. Another feature of the 3723 is its single-ended, one-pole mode, which supports up to 120 channels of single-wire measurements.

The 3723 uses two 78-pin D-sub connectors for signal connections. For screw terminal connections, use the 3723-ST for two- and four-pole configurations or the 3723-ST-1 for single-wire applications.

Two-pole mode

Specifications

Multiplexer Configuration	Two independent 1×30 2-pole multiplexers. Banks can be connected together via relay creating a single 1×60 multiplexer. Banks can be isolated from the backplane by relays. Card can be configured for 1-, 2-, and 4 -wire.			
Contact Configuration	2-pole form A.			
Connector Type	Two 78-pin male D-shells.			
3723-ST Screw Terminal Option	\#22 AWG typical wire size with 0.062 inch O.D. 124 conductors maximum. \#16 AWG maximum wire size with 0.092 inch O.D. 36 conductor per card maximum.			
Maximum Signal Level	200 V DC or RMS, 1 A switched (1.25 A carry), 15 W .			
Common Mode Voltage	300 V DC or RMS between any terminal and chassis.			
Volt-Hertz Limit	8×10^{7}.			
Contact Life	Reed: >109 operations, no load. 10^{7} operations @100 V, 10 mA . EMR: $>10^{8}$ operations @ $5 \mathrm{~V}, 10 \mathrm{~mA} .10^{5}$ operations @ maximuum signal level.			
			Dual 1×30^{1}	Single $1 \times 60^{1,2}$
	Channel Resistance (end of contact life)		$<1.5 \Omega$	$<2.0 \Omega$
	Contact Potential	Single-Ended	$< \pm 6 \mu \mathrm{~V}$	$< \pm 6 \mu \mathrm{~V}$
		Differential	< $\pm 12 \mu \mathrm{~V}$	< $\pm 12 \mu \mathrm{~V}$
	Offset Current		<250 pA	<250 pA
	Isolation	Differential	$10^{10} \Omega, 260 \mathrm{pF}$	$10^{10} \Omega, 500 \mathrm{pF}$
		Bank-Bank	$10^{10} \Omega, 75 \mathrm{pF}$	-
		Channel-channel	$10^{10} \Omega, 75 \mathrm{pF}$	$10^{10} \Omega, 75 \mathrm{pF}$
		Common Mode	$10^{10} \Omega, 280 \mathrm{pF}$	$10^{9} \Omega, 625 \mathrm{pF}$
	Crosstalk Channel-channel	300 kHz	<-55 dB	<-55 dB
		1 MHz	$<-50 \mathrm{~dB}$	$<-45 \mathrm{~dB}$
		20 MHz	<-20 dB	$<-20 \mathrm{~dB}$
	Bandwidth		20 MHz	10 MHz

Typical Scanning Speeds:

Switch Only ${ }^{3} \quad$ Sequential scanning, single channel, immediate trigger advance $>1000 \mathrm{ch} / \mathrm{s}$.
With Measurements Into Memory ${ }^{4}$
DCV (10 V range) or 2 W Ohms ($1 \mathrm{k} \Omega$ range)
$>800 \mathrm{ch} / \mathrm{s}$.
3- or 4-Wire RTD $\quad>450 \mathrm{ch} / \mathrm{s}$.
4-Wire Ohms $(1 \mathrm{k} \Omega$ range)
$>450 \mathrm{ch} / \mathrm{s}$.
ACV $(10 \mathrm{~V}, 400 \mathrm{~Hz}$ range)
$>800 \mathrm{ch} / \mathrm{s}$.

Notes

1. Connections made using 3723-ST accessory.
2. 3706A mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed.
3. Scanning script local to 3706A mainframe, within same bank, and break before make switching.
4. 3706 A mainframe with autorange off, limits off, dmm.autozero $=0$, dmm.autodelay $=0,41 / 2$ digits (NPLC=0.006), for ACV dmm.detectorbandwidth=300, for OHMs dmm. offsetcompensation=off. Scanning script local to mainframe, sequential scan within same bank (2-pole) or card (4-pole), and break before make switching.

General

Actuation Time	$<0.5 \mathrm{~ms}$.
Relay Type	Dry reed.
Relay Drive Scheme	Direct.
Relay Drive Current	10 mA.
Interlock	Backplane relays disabled when interlock connection is removed.
Operating Environment	Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
Storage Environment	-25° to $65^{\circ} \mathrm{C}$.
Weight	3.0 lbs.
Safety	Conforms to European Union Directive 73/23/EEC, EN61010-1.
EMC	Conforms to European Union Directive 2004/108/EC, EN61326-1.

Ordering Information

Available Accessories

3720-MTC-1.5	78-pin D-sub Female to Male Cable, $1.5 \mathrm{~m}(5 \mathrm{ft}$.)
$3720-$ MTC-3	78-pin D-sub Female to Male Cable, $3 \mathrm{~m}(10 \mathrm{ft}$.)
3723-ST	Screw Terminal Block
3723-ST-1	Screw Terminal Block for single-pole applications
3791-CIT	Contact Insertion and Extraction Tool
3791-KIT78-R	78-pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 156 solder-cup contacts)

Available Services

3723-3Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
3723-5Y-EW-STD	1-year factory warranty extended to 5 years from date of shipment
C/3723-3Y-STD	3 (Z540-1 compliant) calibrations within 3 years of purchase*
${ }^{*}$ Not available in all countries	

3724 Dual l×30 FET Multiplexer Card

60 differential channels, automatic CJC with 3724-ST accessory

The 3724 provides two independent banks of solidstate relays arranged as 1×30 two-pole multiplexers that are ideal for high reliability, high speed multipoint measurement applications including temperature. The two banks can automatically be connected to the Series 3700A mainframe backplane and optional DMM through the analog backplane connection relays. This connection allows the mainframe to reconfigure the card to a single 1×60 two-pole multiplexer or to enable card-to-card expansion for even larger configurations.

The solid-state FET relay technology supports fast switching times with scanning rates of greater than 1250 channels/second and provides unlimited contact life. In addition, the 3724 supports thermocouple temperature measurements when used with the 3724-ST (screw terminal) accessory providing automatic cold junction compensation (CJC).

The 3724 uses two 78-pin male D-sub connectors for signal connections. For screw terminal or automatic CJC, use the detachable 3724-ST accessory.

Key Features

- 60 two-pole or 30 four-pole solid-state channels
- Scanning speeds greater than 1250 channels/second (switch only)
- Optically isolated, solid-state FET relays provide unlimited contact life
- 200 V, 0.1 A switch/carry signal capacity; 800 mW
- Automatic CJC for temperature measurements when used with 3724-ST accessory
- Analog backplane connection relays provide easy bank and card interconnections
- Screw terminal connections provided with removable 3724-ST accessory
- Ideal for maintenance-free, long-life thermocouple temperature measurements

3724 Specifications

Multiplexer Configuration	Two independent 1×30, 2-pole multiplexers. Banks can be connected together via relay creating a single 1×60 multiplexer. Banks can be isolated from the backplane by relays. Card can be configured for 2- and 4-wire.		
Contact Configuration	2-pole form A.		
Connector type	Two 78-pin male D-shells.		
3724-ST Screw Terminal Option	\#22AWG typical wire size with 0.062 inch O.D. 124 conductors maximum. 16 AWG maximum wire size with 0.092 inch O.D. 36 conductor per card maximum.		
Maximum Signal Level	200 V DC or 141 V RMS between any terminal, 0.1 A switched (0.1 A carry), 800 mW .		
Common Mode Voltage	300 V DC or RMS between any terminal and chassis.		
Volt-Hertz Limit	10^{7}.		
Contact Life	Solid State: > unlimited. EMR (Backplane): >1×108 operations @ $5 \mathrm{~V}, 10 \mathrm{~mA} .1 \times 10^{5}$ operations @ max. signal level.		
		Dual 1×30^{1}	Single $1 \times 60{ }^{1,2}$
	Channel Resistance	$<62 \Omega\left(54 \Omega @ 23^{\circ} \mathrm{C}\right)$	$<64 \Omega\left(58 \Omega @ 23^{\circ} \mathrm{C}\right)$
	Contact Potential (differential)	$< \pm 2 \mu \mathrm{~V}$	$< \pm 2.5 \mu \mathrm{~V}$
	Offset Current	$\begin{gathered} <10 \mathrm{nA} \\ (< \pm 100 \mathrm{pA} @ \\ \left.23^{\circ} \mathrm{C} / 60 \% \text { R.H. }\right) \end{gathered}$	$\begin{gathered} <10 \mathrm{nA} \\ (< \pm 100 \mathrm{pA} @ \\ \left.23^{\circ} \mathrm{C} / 60 \% \text { R.H. }\right) \end{gathered}$
	Differential	$10^{9} \Omega, 500 \mathrm{pF}$	$10^{9} \Omega, 1100 \mathrm{pF}$
	Aank-Bank	$10^{9} \Omega, 100 \mathrm{pF}$	-
	Isolation ${ }^{\text {CH-CH }}$	$10^{9} \Omega, 125 \mathrm{pF}$	$10^{9} \Omega, 125 \mathrm{pF}$
	Common Mode	$10^{9} \Omega, 150 \mathrm{pF}$	$10^{9} \Omega, 700 \mathrm{pF}$
	Crosstalk $\mathrm{CH}-\mathrm{CH}$ H00 kHz	$-40 \mathrm{~dB}$	$-40 \mathrm{~dB}$
	Crosstalk $\mathrm{CH}-\mathrm{CH}$	$-30 \mathrm{~dB}$	$-30 \mathrm{~dB}$
	Bandwidth	2 MHz	1 MHz

Notes

1. Connections made using 3724-ST.
2. 3706A mainframe with all DMM backplane relays disconnected. Maximum two card backplane relays closed

3724 Card/3706A Multimeter Condensed Specifications

Temperature

Displayed in ${ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$, or K . Exclusive of probe errors.
Displayed in ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$, or K . Exclusive of probe errors.

Thermocouples (accuracy based on ITS-90)

Type	Range	Resolution	90 Day $/ 1$ Year, $23^{\circ} \mathrm{C} \pm 5^{\circ}$
J	-150 to $+760^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$
K	-150 to $+1372^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$
N	-100 to $+1300^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$
T	-100 to $+400^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$
E	-150 to $+1000^{\circ} \mathrm{C}$	$0.001^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$
R	+400 to $+1768^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$	$1.8^{\circ} \mathrm{C}$
S	+400 to $+1768^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$	$1.8^{\circ} \mathrm{C}$
B	+1100 to $+1820^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$	$1.8^{\circ} \mathrm{C}$

DC Specifications

3724 Card/3706A Multimeter Uncertainty Specifications

Function	Range	Notes
Voltage	All	Add $4.5 \mu \mathrm{~V}$ to PPM "of range"
Resistance	$100 \mathrm{k} \Omega$	Add 8 PPM to "of reading"
Resistance	$1 \mathrm{M} \Omega$	Add 80 PPM to "of reading"
Resistance	$10 \mathrm{M} \Omega$	Add 250 PPM to "of reading"
Resistance	$100 \mathrm{M} \Omega$	Add 5000 PPM to "of reading"
Resistance 2-wire	$1 \mathrm{k} \Omega$ through $100 \mathrm{M} \Omega$	Add 1.2Ω (with REL) to PPM "of range" Add 64Ω (without REL) to PPM "of range"
Resistance 4-wire and Dry Circuit	$1 \Omega, 10 \Omega$, and 100Ω	Ranges Not Available (maximum lead resistance exceeded, see manual for measurement considerations)

Conditions	1 PLC or 5 PLC.
Accuracy	$\pm(\mathrm{ppm}$ of reading +ppm of range) $(\mathrm{ppm}=$ parts per million; e.g., $10 \mathrm{ppm}=0.001 \%)$.

General

See Chapter 8 of the Series 3700A user's manual for more detailed information.

Notes

1. Scanning script local to mainframe, within same bank, break before make.
2. 3706A mainframe with autorange off, limits off, dmm. autodelay=0, dmm.autozero=0, $41 / 2$ digits (NPLC=.006), for ACV dmm.detectorbandwidth $=300$, for OHMs dmm.
offsetcompensation=off, dmm.opendetector=off. Scanning script local to mainframe, sequential scan within same bank (2-pole) or card (4-pole), and break before make switching.

Ordering Information

Available Accessories

3720-MTC-1.5	78-pin female-to-male D-sub Cable Assembly, $1.5 \mathrm{~m}(4.9 \mathrm{ft})$
$3720-$ MTC-3	78-pin female-to-male D-sub Cable Assembly, $3 \mathrm{~m}(9.8 \mathrm{ft})$
$3724-$ ST	Screw Terminal Block (required for auto CJC thermocouple measurements)
$3791-$ CIT	Contact Insertion and Extraction Tool
$3791-$ KIT78-R	78-pin female D-sub Connector Kit (contains 2 female D-sub connectors and 156 solder-cup contacts)

Available Services

3724-3Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
$3724-5 Y-E W-S T D$	1-year factory warranty extended to 5 years from date of shipment
C/3724-3Y-DATA	3 (Z540-1 compliant) calibrations within 3 years of purchase*

*Not available in all countries

3730 6×16, High Density, Matrix Card

96 two-pole crosspoints with column expansion relays

The 3730 is a two-pole, 6 row by 16 column matrix card. It can connect up to six differential instrument channels to any combination of 16 DUTs (devices under test). Any row can be connected to the Series 3700A mainframe backplane by using the analog backplane connection relays. This allows for easy matrix column expansion. A matrix of up to 6 rows by 96 columns can be supported within a single 3706A mainframe (with six 3730 cards).

Key Features

- 6 row by 16 column matrix (2-pole)
- Analog backplane connection relays provide easy column expansion
- 300 V, 1 A switched or 2 A carry signal capacity; $60 \Omega, 125$ VA
- Screw terminal connections provided on removable 3730-ST accessory
- $2 \mu \mathrm{~V}$ and 100 pA offsets
- Relay closures stored in onboard memory
- Latching electromechanical relays

The 3730 uses two 50-pin male D-sub connectors for signal connections. For screw terminal connections, use the detachable 3730-ST accessory.

1. 3706 A ambient temperature $<28^{\circ} \mathrm{C}$.
2. One shot repetition rate >10 seconds
3. Signal path routed only through one card (not through backplane).
. Only one channel closed at a time
4. Contact life specification unaffected if pulse width and carry current are not exceeded.

Specifications

Matrix Configuration	6 row by 16 column matrix. Columns can be expanded using the backplane or isolated by relays.	
Contact Configuration	2-pole form A.	
Connector Type	Two 50-pin male D-shells.	
3730-ST Screw Terminal Option	\#22 AWG typical wire size with 0.062 inch O.D. 88 conductors maximum. \#16 AWG maximum wire size with 0.092 inch O.D. 44 conductor per card maximum.	
Maximum Signal Level	300 V DC or RMS, 1 A switched (2 A carry), 60Ω, 125 VA .	
Common Mode Voltage	300 V DC or RMS between any terminal and chassis.	
Volt-Hertz Limit	8×10^{7}.	
Contact Life	$>10^{5}$ operations @ maximuum signal level.	$>10^{8}$ operations n
		$6 \times 16^{2,3}$
	Channel Resistance (end of contact life)	$<1.0 \Omega$
	Contact Potential (differential)	$< \pm 2 \mu \mathrm{~V}$
	Offset Current	$< \pm 100 \mathrm{pA}$
	Isolation	$10^{10} \Omega, 250 \mathrm{pF}$
		$10^{10} \Omega, 75 \mathrm{pF}$
		$10^{10} \Omega, 150 \mathrm{pF}$
	Crosstalk Channel-Channel	$<-65 \mathrm{~dB}$
		$<-55 \mathrm{~dB}$
		$<-30 \mathrm{~dB}$
	Bandwidth	27 MHz

Notes

1. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$
2. Connections made using 3730 -ST accessory.
3. 3706 A mainframe with all DMM backplane relays disconnected

General

Actuation Time	4 ms.
Relay Type	Latching electromechanical.
Relay Drive Scheme	Hybrid Matrix.
Interlock	Backplane relays disabled when terminal assembly is removed.
Operating Environment	Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
Storage Environment	-25° to $65^{\circ} \mathrm{C}$.
Weight	2.5 lbs.
Safety	Conforms to European Union Directive $73 / 23 / E E C$, EN61010-1.
EMC	Conforms to European Union Directive 2004/108/EC, EN61326-1.

Ordering Information

3730
6×16, High Density, Matrix Card

Available Accessories

3721-MTC-1.5	50-pin D-sub Female to Male Cable, $1.5 \mathrm{~m}(5 \mathrm{ft})$.
$\mathbf{3 7 2 1 - M T C - 3}$	$50-$ pin D-sub Female to Male Cable, $3 \mathrm{~m}(10 \mathrm{ft})$.
$\mathbf{3 7 3 0 - S T}$	Screw Terminal Block
$\mathbf{3 7 9 0 - K I T 5 0 - R ~}$	$50-$-pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 100 solder-cup contacts)

Available Services

3730-3Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
3730-5Y-EW-STD	1-year factory warranty extended to 5 years from date of shipment
C/3730-3Y-STD	3 (Z540-1 compliant) calibrations within 3 years of purchase ${ }^{\star}$

[^1]
3731 6x16 High Speed, Reed Relay, Matrix Card

96 two-pole crosspoints with column expansion relays

The 3731 is a two-pole, 6 row by 16 column reed relay matrix card. By using high speed reed relays with actuation times of 0.5 ms , this card meets the requirements of demanding throughput applications while offering users the additional benefit of long life, exceeding one billion operations. The card can connect up to six differential instrument channels to any combination of 16 DUTs (devices under test). Any row can be connected to the Series 3700A mainframe backplane by using the analog backplane connection relays. This allows for easy matrix column expansion. A matrix of up to 6 rows by 96 columns can be supported within a single 3706A mainframe (with six 3731 cards).

Key Features

- 6 row by 16 column matrix (2-pole) using high speed, long life reed relays
- Analog backplane connection relays provide easy column expansion
- 200 V, 1 A switched or 2 A carry signal capacity; 10Ω, 10VA
- Screw terminal connections provided on removable 3731-ST accessory
- Relay actuation time of 0.5 ms
- Ideal for multi-channel I-V testing with Series 2600B Systems
- Long life dry reed relays (>109 operations)

The 3731 uses two 50-pin male D-sub connectors for signal connections. For screw terminal connections, use the detachable 3731-ST accessory.

Specifications

Matrix Configuration	6 row by 16 column matrix. Columns can be expanded using the backplane or isolated by relays.	
Contact Configuration	2-pole form A.	
Connector Type	Two 50-pin male D-shells.	
3731-ST Screw Terminal Option	Typical wire size: \#22 AWG with . 062 inch O.D.; 88 conductors maximum Maximum wire size: \#16 AWG with . 092 inch O.D.; 44 conductors per card maximum.	
Maximum Signal Level	200 V DC or peak AC, 1 A switched (2 A carry), $10 \Omega, 10 \mathrm{VA}$.	
Common Mode Voltage	200 V DC or peak AC between any signal path to a signal path or ground.	
Volt-Hertz Limit	8×10^{7}.	
Contact Life	Reed: $>10^{9}$ operations no load. $>8 \times 10^{6}$ operations @ $100 \mathrm{~V}, 10 \mathrm{~mA}$. EMR (Backplane): >108 operations @ $5 \mathrm{~V}, 10 \mathrm{~mA}$ and 105 operations @ maximum signal level.	
		$6 \times 16^{1,2}$
	Channel Resistance (end of contact life)	$<1.5 \Omega$
	Contact Potential (differential)	< $\pm 80 \mu \mathrm{~V}$
	Offset Current	$< \pm 500 \mathrm{pA}$
	Differential	$3 \times 10^{9} \Omega, 300 \mathrm{pF}$
	Isolation \quad Channel-channel	$3 \times 10^{9} \Omega, 100 \mathrm{pF}$
	Common Mode	$3 \times 10^{9} \Omega, 150 \mathrm{pF}$
	300 kHz	$<-60 \mathrm{~dB}$
	Crosstalk Channel-Channel 1 MHz	$<-50 \mathrm{~dB}$
	1/ 15 MHz	$<-20 \mathrm{~dB}$
	Bandwidth	19 MHz

Notes

1. Connections made using 3731-ST.
2. 3706 A mainframe with all DMM backplane relays disconnected.

General

Actuation Time	0.5 ms.
Relay Type	Reed.
Relay Drive Scheme	Direct drive.
Interlock	Backplane relays disabled when terminal assembly is removed.
Operating Environment	Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
Storage Environment	-25° to $65^{\circ} \mathrm{C}$.
Weight	2.2 lbs.
Safety	Compliant with European Union Low Voltage Directive
EMC	Compliant with European Union EMC Directive 2004/108/EC, EN61326-1.

Ordering Information

Available Accessories

3721-MTC-1.5	50-pin D-sub Female to Male Cable, $1.5 \mathrm{~m}(5 \mathrm{ft})$.
$3721-$ MTC-3	50 -pin D-sub Female to Male Cable, $3 \mathrm{~m}(10 \mathrm{ft})$.
$3731-$ ST	Screw Terminal Block
$3790-$ KIT50-R	50 -pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 100 solder-cup contacts)

Available Services

3731-3Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
3731-5Y-EW-STD	1-year factory warranty extended to 5 years from date of shipment
C/3731-3Y-STD	3 (Z540-1 compliant) calibrations within 3 years of purchase*

3732 Quad 4×28, Ultra-High Density, Reed Relay Matrix Card

448 one-pole crosspoints with bank configuration and backplane connection relays

The ultra-high density 3732 matrix card is comprised of four banks, each with 4 rows by 28 columns of reed relays. This provides 448 single-pole crosspoints for maximum connection versatility in high channel count applications. For even greater flexibility, bank configuration relays are mounted on the card. They offer an automated method of connecting banks to enable two additional matrix configurations: single 4×112 and dual 4×56. This feature allows the matrix size to be easily adapted to existing or future applications. For differential (2-wire) measurements, a two-pole mode can be selected that enables automatic pairing of crosspoints to create a dual 4×28 or single 4×56 configuration. For larger matrix sizes, analog backplane relays are provided that enable rows to connect to the Series 3700A mainframe backplane. This allows, for example, a matrix of up to 4 rows by 672 columns within a single 3706A mainframe using six 3732 cards.

Key Features

- Four independent banks of 4×28 single-pole matrices
- 200 V, 1.2 A carry or 0.75 A switched signal capacity; 15 W, 15 VA
- Bank configuration relays enable alternative matrix sizes, including:
- Dual 4×56 (1 wire)
- Single 4×112 (1 wire)
- Single 4×56 (2 wire)
- Optional accessory, 3732-ST-R, enables screw terminal access and additional matrix sizes including:
- Dual 8×28 (1 wire)
- Single 16×28 (1 wire)
- Single 8×28 (2 wire)
- Analog backplane connection relays provide easy card-to-card column expansion
- Long life dry reed relays (>109 operations)
- Ideal for high channel count I-V testing with Series 2600B Systems
The card uses optimized reed relays that offer both low contact potential and low current offset to minimize the switching errors that often accompany this relay technology. Additionally, these relays provide greater signal voltage (200 V) and current (1.2 A carry) dynamic range while supporting the long life and fast actuation times necessary in many automated test applications.

The 3732 uses two 78-pin male D-sub connectors for signal and configuration connections. For screw terminal connections, two accessories are offered. Use the 3732-ST-R for the 16×28 or dual 8×28 matrix configurations. Use the $3732-$ ST-C for the 4×112, dual 4×56, or base quad 4×28 matrix configurations.

Quad 4×28 (1-wire) or Dual 4×28 (2-wire) Matrix Configuration

Analog Backplane Connection Relays

Additional Matrix Configurations Using Bank Configuration Relays

Dual 4×56 (1-wire) or single 4×56 (2-wire) matrix configuration using bank configuration relays

Single 4×112 (1-wire) matrix configuration using bank configuration relays

Additional Matrix Configurations Using the 3732-ST-R Screw Terminal Block

Dual 8×28 (1-wire) or single 8×28 (2-wire) matrix configuration using one 3732-ST-R screw terminal block

Single 16×28 (1-wire) matrix configuration using one 3732-ST-R screw terminal block

Specifications

Matrix Configuration	Four banks, each with 4 rows by 28 columns of reed relays. Bank configuration and analog backplane relays are included for additional matrix configurations. Banks can be connected together via relays creating dual 4×56 matrices or a single 4×112 matrix. Row expansion is available using optional screw terminal accessories.
Contact Configuration	Single-pole form A.
Connector Type	Two 78-pin male D-shells.
3732-ST-R Screw Terminal Option	Provides terminal block access and column jumper blocks for extended row configurations including Dual $8 \times 28(1 \mathrm{~W})$, Single $8 \times 28(2 \mathrm{~W})$, and Single 16×28 (1 W).
Typical Wire Size	\#22 AWG with 0.062 inch O.D.; 88 conductors per card maximum.
Maximum Wire Size	\#16 AWG with 0.092 inch O.D.; 44 conductors per card maximum.
3732-ST-C Screw Terminal Option	Provides terminal block access for Quad 4×28 (1 W), Dual 4×28 (2 W), Dual 4×56 (1 W), Single $4 \times 56(2$ W), and Single 4×112 (1 W) matrix configurations.
Typical Wire Size	\#22 AWG with 0.062 inch O.D.; 88 conductors per card maximum.
Maximum Wire Size	\#16 AWG with 0.092 inch O.D.; 44 conductors per card maximum.
Maximum Signal Level	200 VDC or peak AC, 0.75A switched (1.2 A carry), $15 \mathrm{~W} / 15 \mathrm{VA}$ max. switch power.
Common Mode Voltage	200 VDC or peak AC between any signal path to a signal path or ground.
Volt-Hertz Limit	8×10^{7}.
Contact Life	Reed: $>10^{9}$ operations no load, $>8 \times 10^{6}$ operations @ $100 \mathrm{~V}, 10 \mathrm{~mA}$.
EMR (Backplane)	$>10^{8}$ operations @ $5 \mathrm{~V}, 10 \mathrm{~mA}$ and 10^{5} operations at maximum signal level.

3732 Parameters

Parameter		Quad $4 \times 28^{1,2}$	Dual $4 \times 56^{1,2}$	Single $4 \times 112^{1,2}$	Dual $8 \times 28^{2,3}$	Single $16 \times 28^{2,3}$
Channel Resistance (end of life)		$<1.5 \Omega$	$<2.0 \Omega$	$<2.5 \Omega$	$<1.6 \Omega$	$<2.0 \Omega$
Contact Potential (differential)		$< \pm 10 \mu \mathrm{~V}$	$< \pm 20 \mu \mathrm{~V}$	N/A	$< \pm 15 \mu \mathrm{~V}$	N/A
Contact Potential (single ended)		$< \pm 20 \mu \mathrm{~V}$	$< \pm 40 \mu \mathrm{~V}$	$< \pm 65 \mu \mathrm{~V}$	$< \pm 20 \mu \mathrm{~V}$	$< \pm 20 \mu \mathrm{~V}$
Offset Current		$< \pm 0.5 \mathrm{nA}$	$< \pm 1.0 \mathrm{nA}$	$< \pm 2.0 \mathrm{nA}$	$< \pm 1.0 \mathrm{nA}$	$< \pm 2.0 \mathrm{nA}$
Isolation	$\mathrm{CH}-\mathrm{CH}$	$3 \times 10^{9} \Omega / 150 \mathrm{pF}$	$1.5 \times 10^{9} \Omega / 300 \mathrm{pF}$	$7.5 \times 10^{8} \Omega / 600 \mathrm{pF}$	$2 \times 10^{9} \Omega / 200 \mathrm{pF}$	$1.5 \times 10^{9} \Omega / 300 \mathrm{pF}$
	Common mode	$1.5 \times 10^{9} \Omega / 300 \mathrm{pF}$	$1.5 \times 10^{9} \Omega / 300 \mathrm{pF}$	$7.5 \times 10^{8} \Omega / 600 \mathrm{pF}$	$2 \times 10^{9} \Omega / 200 \mathrm{pF}$	$1.5 \times 10^{9} \Omega / 300 \mathrm{pF}$
Crosstalk Ch-Ch	300 kHz	$<-37 \mathrm{~dB}$				
	1 MHz	$<-26 \mathrm{~dB}$				
	15 MHz	$<-7 \mathrm{~dB}$				
Bandwidth		15 MHz	15 MHz	10 MHz	15 MHz	15 MHz

Notes

1. Connections made using 3732-ST-C.
2. 3706 A mainframe with all DMM backplane relays disconnected
3. Connections made using 3732-ST-R.

General

Power Budget Information
Quiescent Power Usage

Mode	Quiescent Power
Quad 4×28	780 mW
Dual 4×56	916 mW
Single 4×112	984 mW
Dual 8×28	780 mW
Single 16×28	780 mW

Channel Relay Power Consumption (each) 17 mW.
Backplane Relay Power Consumption (each) 100 mW .
For additional power-budgeting information, refer to the Series 3700A Module Schematics and Connections section in the Series 3700A User's Manual (part no. 3700S-900-01).

Actuation Time	0.6 ms.
Relay Type	Reed (signal relays); EMR (backplane relays)
Relay Drive Scheme	Direct drive.
Relay Drive Current	3.2 mA.
Interlock	Backplane relays disabled when terminal assembly interlock signal removed. When asserted allows system to read and save ID configuration bits.
EMC	Compliant with European Union EMC Directive.
Safety	Compliant with European Union Law Voltage Directive.
Operating Environment	Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% relative humidity at $35^{\circ} \mathrm{C}$.
Storage Environment	-25° to $65^{\circ} \mathrm{C}$.
Weight	$3.40 \mathrm{lbs}(1.54 \mathrm{~kg})$.

Ordering Information

3732
Quad 4×28, Ultra-High Density, Reed Relay Matrix Card

Available Accessories

3732-ST-C	Screw Terminal Block for matrix configurations: Quad 4×28 (1 wire) Dual 4×28 (2 wire) Single 4×56 (2 wire) Dual 4×56 (1 wire) Single 4×112 (1 wire)
3732-ST-R	Screw Terminal Block for matrix configurations: Dual 8×28 (1 wire) Single 8×28 (2 wire) Single 16×28 (1 wire)
3732-MTC-1.5	78-pin, D-sub Female-to-Male Cable, 1.5 m (5 ft.)
3732-MTC-3	78-pin, D-sub Female-to-Male Cable, 3 m (10 ft.)
3791-CIT	Contact Insertion and Extraction Tool
3791-KIT78-R	78-pin, Female D-sub Connector Kit (contains 2 female D-sub connectors and 156 solder-cup contacts)
Services Available	
3732-3Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
3732-5Y-EW-STD	1-year factory warranty extended to 5 years from date of shipment
C/3732-3Y-STD	3 (Z540-1 compliant) calibrations within 3 years of purchase*

*Not available in all countries

3740 32-channel Isolated Switch Card

28 Form C relays and 4 high power Form A relays

The 3740 offers 28 general-purpose form C channels that are ideal for routing power or other control devices. For higher power applications of up to 7 A , four additional high current form A channels are provided.

If any general purpose signal requires routing to the Series 3700A mainframe backplane, terminal blocks are located on the card, which are enabled with jumpers. Custom configurations can be created with the user accessible terminal blocks. For additional protection, an onboard temperature sensor will notify the mainframe when the card's operating temperature exceeds $70^{\circ} \mathrm{C}$, compromising system specifications.

Key Features

- 28 general purpose Form C relays rated for 300 V, 2 A switched or 3 A carry signal capacity; $60 \Omega, 125$ VA
- 4 high current Form A relays rated for 250 VAC, 7 A or 30 VDC, 7 A switched capacity; 210Ω
- Analog backplane connection relays provided for user interconnections
- Screw terminal connections provided on removable 3740-ST accessory
- Relay closures stored in onboard memory
- Latching electromechanical relays

The 3740 uses two 50-pin male D-sub connectors for signal connections. For screw terminal connections, use the detachable 3740-ST accessory.

Specifications

Relay Switch Configuration	32 general purpose independent channels. 28 channels of Form C switching at $2 A$ and 4 channels of Form A switching at 7 A . Relays can be connected to each other and backplane via removable terminal blocks.
Contact Configuration	General Purpose: 1-pole Form C. High Current: 1-pole Form A.
Connector Type	Two 50-pin male D-shells.
3740-ST Screw Terminal Option	\#22 AWG typical wire size with 0.062 inch O.D. 84 conductors maximum. \#16 AWG maximum wire size with 0.092 inch O.D. 44 conductors per card maximum.
Maximum Signal Level	Form C: 300 V DC or RMS, 2 A switched (3 A carry), $60 \Omega, 125$ VA. Form A: 250 VAC 7 A, 30 VDC 7 A, 210Ω.
Common Mode Voltage	300 V DC or RMS between any terminal and chassis.
Volt-Hertz Limit	8×10^{7}.
Contact Life	Form C: $>10^{5}$ operations at maximum signal level. $>10^{8}$ operations no load. ${ }^{1}$ Form A: $>10^{5}$ operations at maximum signal level, $>5 \times 10^{7}$ operations no load. ${ }^{1}$
Channel Resistance (end of contact life)	
Contact Potential	$< \pm 3 \mu \mathrm{~V}$ typical per contact.
Isolation	Channel-channel: $10^{9} \Omega,<200 \mathrm{pF}$. Common Mode: $>10^{10} \Omega,<150 \mathrm{pF}$.
Crosstalk (Channel-channel, 50Ω load-50 Ω source)	
Bandwidth	MHz.

Notes

1. Minimum signal level $10 \mathrm{mV}, 10 \mu \mathrm{~A}$.

General

Over-Temperature	Temperature sensor indicates over temperature.
Actuation Time	Form C: 4 ms. Form A: 10 ms.
Relay Type	Form C: Latching electromechanical. Form A: Nonlatching electromechanical.
Relay Drive Scheme	Direct.
Interlock	Backplane relays disabled when interlock connection is removed.
Operating Environment	Specified for 0° to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
Storage Environment	-25° to $65^{\circ} \mathrm{C}$.
Weight	2.5 lbs.
Safety	Conforms to European Union Directive $73 / 23 / \mathrm{EEC}$, EN61010-1.
EMC	Conforms to European Union Directive 2004/108/EC, EN61326-1.

Ordering Information

Accessories Available

3721-MTC-1.5	50-pin D-sub Female to Male Cable, $1.5 \mathrm{~m}(5 \mathrm{ft})$.
$3721-$ MTC-3	50 -pin D-sub Female to Male Cable, $3 \mathrm{~m}(10 \mathrm{ft}$.)
$3740-$ ST	Screw Terminal Block
$3790-$ KIT50-R	$50-$ pin Female D-sub Connector Kit (contains 2 female D-sub connectors and 100 solder cup contacts)

Services Available

$3740-3$ Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
$3740-5$ Y-EW-STD	1-year factory warranty extended to 5 years from date of shipment
C/3740-3Y-STD	3 (Z540-1 compliant) calibrations within 3 years of purchase*

3750 Multifunction Control Card

40 digital I/O bits, 2 analog output channels, and 4 counters

Use the 3750 to monitor and control your automated test system. The flexibility and speed provided by the 40 digital I/O bits, four counters, and two analog outputs make it well-suited for a wide variety of system control applications.

Key Features

- 40 bidirectional digital input/output bits
- High current driver outputs for sinking (300 mA)
- Internal $5 \mathrm{~V}, 50 \mathrm{~mA}$ logic supply for powering external logic circuits
- 2 isolated analog output channels, programmable to $\pm 12 \mathrm{~V}, 0-20 \mathrm{~mA}$, or 4-20 mA
- 4 gated 32 -bit counters with 1 MHz input rate
- Screw terminal connections provided with removable 3750-ST accessory
- External supply voltage supported on digital I/O

Digital I/O

The 3750 offers 40 digital I/O bits arranged in five banks. Each bank is comprised of eight bits each, and each bank can be programmed as either input or output. Digital I/O is often used to control processes and monitor the status of switches, contacts, and other control points. Additional features include scanning capabilities, such as writing a unique output pattern or reading banks of inputs at rates up to 1000 rdgs/second. Also, pattern matching is available, making it ideal for complex event algorithms.

Further versatility is provided by supporting external voltage levels of up to 30 V and output current sink levels of 300 mA for control of external devices like RF/ microwave relays.

Analog Outputs

The two analog outputs of the 3750 are designed for general purpose applications such as setpoint control or as bias supplies to your device under test. For maximum utility, these outputs are programmable as voltage ($\pm 12 \mathrm{~V}$) or current ($0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$). A number of protection features are provided, including monitoring for current and/or voltage compliance and the ability to disconnect automatically during fault conditions. Output relays are supplied for each channel, ensuring mechanical isolation between your control device and the analog output.

Counters

Four 32-bit counters are provided with a maximum input rate of 1 MHz . Each counter has a gate input that offers precise control of event counting and totalizing for a broad range of system components, such as: fixtures, limit switches, pass/fail indicators, revolutions, or time-related quantities. The counters, like the digital I/O, can be used in scanning operations and pattern matching as well as supporting reading rates of up to 1000 rdgs/second.

Self-calibration

When your 3706A mainframe is equipped with the high performance multimeter option, hardware and software is provided for self-calibration of analog outputs (voltage and current) and counter thresholds.

Figure 2. Simplified I/O schematic

Figure 1. Block diagram

Specifications

Digital I/O¹

Configuration 40 bidirectional digital I/O bits arranged in 5 banks of 8 bits each. Each bank can be configured for either input or output capability. 1 bank of I/O is equivalent to 1 system channel.

Digital Input Specifications

An internal weak pull-up resistor of approximately $68 \mathrm{k} \Omega$ is provided on the card for each I/O. This pull-up resistor can be removed via onboard jumper on a channel (8 bit) basis. The pull-up voltage can either connect to the internally supplied 5 V or an externally supplied voltage of up to 30 V via onboard jumper. An internal 5 V supply connection is separately available to run external logic circuits.

Digital Input Logic Low Voltage	0.8 V max.
Digital Input Logic High Voltage	2 V min.
Digital Input Logic Low Current	$-600 \mu \mathrm{~A} \max @ 0 \mathrm{~V}$.
Digital Input Logic High Current	$50 \mu \mathrm{~A} \max @ 5 \mathrm{~V}$.
Logic	Positive true.

System Input Minimum Read Speed ${ }^{2}$

1000 readings/second.

Maximum Externally Supplied Pull-Up Voltage
 30 V .

Maximum Externally Supplied Voltage to Any Digital I/O Line

Pull-up voltage (5 V internal or up to 30 V external).

Digital Output Specifications

Each output has an internal fly-back diode for driving inductive loads. Each output is protected against continuous short circuits and over temperature. An internal 5 V supply connection is separately available to run external logic circuits.

Digital Output Logic High Voltage	2.4 V minimum @ lout $=10 \mathrm{~mA}$, sourcing only.
Digital Output Logic Low Voltage	0.5 V maximum @ lout $=-300 \mathrm{~mA}$, sinking only.
Maximum Output Sink Current	300 mA per output, 3.0 A total per card.
Logic	Positive true.
System Output Minimum Write Speed ${ }^{3}$	
1000 readings/second.	

Maximum Externally Supplied Voltage to Any Digital I/O Line			
	Pull-up voltage (5 V internal or up to 30 V external).		Trigger generation is supported for a maskable pattern match or state change on any of channels 1
:---			
through 5.			

Notes

1. All channels power up configured as inputs.
2. All channels configured as inputs.
3. All channels configured as outputs.

Counter/Totalizer Input

Maximum Count	$2^{32}-1$.
Maximum Input Rate	1 MHz , rising or falling edge, programmable.
Minimum Input Pulse Width	500 ns.
Input Signal Level	200 mV p-p (minimum), 42 V peak (maximum).
Threshold	$\mathrm{AC} \mathrm{(0} \mathrm{V)} \mathrm{or} \mathrm{TTL} \mathrm{logic} \mathrm{level}$.
Gate Input	TTL-HI (Gate+), TTL-LO (Gate-) or NONE.
Minimum Gate Input Setup Time	$1 \mu \mathrm{ms}$.
Count Reset	Manual or Read + Reset.
System Input Minimum Read Speed	1000 readings/second.
Alarm	Trigger generation is supported for a count match or counter overflow on any of channels 6 though 9.

Analog Voltage Output

The isolated analog voltage output is designed for general purpose, low power applications

Output Amplitude ${ }^{1}{ }^{1} \pm 12 \mathrm{~V}$ up to 10 mA .	
Overload Current 21 mA minimum.	
Resolution 1 mV .	
Full Scale Settling Time ${ }^{2}$ (1 ms to 0.1% of output.	
$\begin{array}{lll} \hline \text { DC Accuracy }{ }^{3} \pm(\% \text { of output }+\mathrm{mV}) & 1 \text { Year } 23^{\circ} \pm 5^{\circ} \mathrm{C} & 0.15 \%+16 \mathrm{mV} . \\ & 90 \text { Day } 23^{\circ} \pm 5^{\circ} \mathrm{C} & 0.1 \%+16 \mathrm{mV} . \\ & 24 \mathrm{Hour}^{23^{\circ}} \pm 5^{\circ} \mathrm{C} & 0.04 \%+16 \mathrm{mV} . \end{array}$	
Temperature Coefficient $\quad \pm(0.02 \%+1.2 \mathrm{mV}) /{ }^{\circ} \mathrm{C}$.	
10mV Maximum Update Rate 350μ s to 1% accuracy. System limited.	
Output Fault DetectionSystem fault detection is available for short circuit output/current compliance.	
Isolation 300 V peak channel to channel or channel to chassis.	
Protection Optional disconnect during output fault conditions.	Standard Load Test Circuit for Voltage Output Channels 10 and 11
Minimum Guaranteed Stable Capacitive Load 10 nF . Notes 1. Programming up to 1% over full scale range is supported. 2. Measured with standard load shown in Figure 3. 3. Measured with $>10 \mathrm{M} \Omega$ input DMM (DCV, filter, 1 PLC rate). Warm-up time is 1 hour @ 10 mA load with 3750-ST.	

Figure 3. Standard load test circuits

Analog Current Output

The isolated analog current output is designed for 0-20 mA or 4-20 mA unipolar modes of operation.

Output Amplitude	0 to 20 mA or 4 to 20 mA.
Compliance Voltage	11 V minimum.
Maximum Open Circuit Voltage	16 V.
Resolution	$1 \mu \mathrm{~A}$.
Full Scale Settling Time ${ }^{1}$	1 ms to 0.1% of output.
DC Accuracy ${ }^{2} \pm(\%$ of output $+\mu \mathrm{A})$	$1 \mathrm{Year} 23^{\circ} \pm 5^{\circ} \mathrm{C} \quad 0.15 \%+18 \mu \mathrm{~A}$.
	90 Day $23^{\circ} \pm 5^{\circ} \mathrm{C} \quad 0.1 \%+18 \mu \mathrm{~A}$.
Temperature Coefficient	24 Hour $23^{\circ} \pm 5^{\circ} \mathrm{C} \quad 0.04 \%+18 \mu \mathrm{~A}$.
Output Fault Detection	$\pm(0.02 \%+1.6 \mu \mathrm{~A}) /{ }^{\circ} \mathrm{C}$.
Isolation	System fault detection is available for open circuit output/voltage compliance.
Protection	300 V peak channel to channel or channel to chassis.

Notes

1. Measured with standard load shown in Figure 4
2. Measured with $<2 \Omega$ shunt DMM (DCI, filter, 1 PLC rate). Warm-up time is 1 hour with $3750-$ ST.

Figure 4. Standard load test circuits

General

Connector Type	Two $50-$ pin male D-shells.
Operating Environment	Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to 70% R.H. at $35^{\circ} \mathrm{C}$.
Storage Environment	$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
Weight	$1.27 \mathrm{~kg}(2.80 \mathrm{lbs}).$.
Safety	Conforms to European Union Directive $73 / 23 / \mathrm{EEC}$, EN61010-1.
EMC	Conforms to European Union Directive 2004/108/EC, EN61326-1.
Power Budget Information	Quiescent Power: 3300 mW. Digital Outputs Each Channel (1 through 5): 325 mW. Analog Channel Each (10 and 11): 820 mW. Totalizer Channel All (6 through 9): 730 mW. Analog channels and counter channels may optionally be turned off to conserve system power.

See Chapter 8 of the Series 3700A user's manual for more detailed information.

Ordering Information

Accessories Available

3721-MTC-1.5	50-pin female-to-male D-sub Cable Assembly, $1.5 \mathrm{~m}(4.9 \mathrm{ft})$
$3721-$ MTC-3	50 -pin female-to-male D-sub Cable Assembly, $3 \mathrm{~m}(9.8 \mathrm{ft})$
$3750-$ ST	Screw Terminal Block
$3790-$ KIT50-R	50-pin female D-sub Connector Kit (contains 2 D-sub connectors and 100 solder cup contacts)

Services Available

3750-3Y-EW-STD	1-year factory warranty extended to 3 years from date of shipment
$3750-5$ Y-EW-STD	1-year factory warranty extended to 5 years from date of shipment
C/3750-3Y-DATA	3 (Z540-1 compliant) calibrations within 3 years of purchase*

*Not available in all countries

3760 10-Channel High-Current Multiplexer Card

The 3760 has ten 2-pole channels and features 5 A contacts. The switching is designed to maintain current paths for signals not connected to the output or, when internal jumpers are removed, to provide high input resistance for making voltage measurements. The 3760 does not connect to the 6 common buses on the 3706A backplane. Daisy chaining cards can be achieved by using an output channel. Semiconductor testing, materials research, power supply testing, solar cell measurements, electrochemical applications and IC testing are among the applications simplified with the 3760 High Current Multiplexer Card.

Specifications

Channels Per Card	10.
Contact Configuration	2-pole Form C with common guard.
Connector Type	Screw terminal, \#16AWG maximum wire size.
Relay Drive Current	80 mA per relay typical.
Maximum Switching Levels	$300 \mathrm{~V}, 5 \mathrm{~A}, 100 \mathrm{VA}$ (resistive load only).
Maximum Applied Voltage	500 V.
Contact Life	$>10^{7}$ closures (cold switching),
10^{5} closures (at maximum	
signal level).	

Available Services

$-3760-3 Y-E W$	1 year factory warrenty extended to 3 years from date of shipment.
$-3760-5 Y-E W$	1 year factory warrenty extended to 5 years from date of shipment.

3761 10-Channel Low Current Multiplexer Card

The 3761 provides quality low-current switching at an affordable price. The offset current error generated is specified <1 pA, with typical performance at $<30 f A$. When used with a voltage source and an electrometer or picoammeter, this card can easily automate insulation resistance tests, reverse leakage tests on semiconductor junctions, or gate leakage tests on FETs.
The 3761 features both current and voltage modes. In current mode, the current path is maintained even when the channel is open. This eliminates cable charging time between measurements. In voltage mode, the input is broken and is high impedance. Input connectors are SMA for shielding of the sensitive measurements. An SMA male to BNC male cable ($3761-\mathrm{BNC}-\mathrm{SMA}$) is available for compatibility with existing 7158 configurations and with Keithley accessory cables such as the 4801 and 4803. The 3761 does not connect to the 6 common buses on the 3706A backplane, but two outputs are provided to allow for chaining several scanner cards to one measurement instrument, allowing up to 60 channels, while an isolation relay in the output HI minimizes interaction between cards.

Specifications

Channels Per Card	10.
Contact Configuration	Form A. Signal LO is common for all 10 channels and output. When open, signal HI is shorted to signal LO in current mode. When open, signal HI is high impedance in voltage mode.
Connector Type	SMA.
Relay Drive Current	$16 \mathrm{~mA} /$ relay typ.
Maximum Signal Level	$30 \mathrm{~V}, 100 \mathrm{~mA}$ peak (resistive load).
Contact Life	$>10^{6}$ closures at maximum signal levels; $>10^{7}$ closures cold switching or at low signal levels.
Contact Resistance	$<1 \Omega$.
Contact Potential	<200 $\mu \mathrm{V}$.
Offset Current	$<1 \mathrm{pA}$ (<30 fA typical).
3dB Bandwidth	1 MHz typical.
Actuation Time	$<1 \mathrm{~ms}$, exclusive of mainframe.
Channel Isolation	$>10{ }^{14} \Omega,<50 \mathrm{pF}$.
Common Mode Isolation	$>10^{9} \Omega,<150 \mathrm{pF}$.
Common Mode Voltage	<30 V maximum.

Available Accessories

3761-BNC-SMA	SMA to BNC Cable
7712-SMA-1	Low Noise Male to Male SMA
	Cable
4801	Low Noise Male to Male BNC Cable
$4802-10$	Low Noise BNC to 4803
Unterminated Cable, 10 ft.	

Available Services

$-3761-3 Y-$ EW	1 year factory warrenty extended to 3 years from date of shipment
$-3761-5$ Y-EW	1 year factory warrenty extended to 5 years from date of shipment

3762 10-Channel High Voltage Multiplexer Card

The 3762 switches voltages up to 1000 V peak or currents up to 0.5 A . The current carry capacity of each relay contact is 1 A . Two-pole relays switch both circuit HI and circuit LO for full floating measurements. A Guard input common to all channels is provided for shielding or as a guard driven by a single instrument. Guards may be isolated by removing resistors installed at each input. Multiple switched guard circuits can be achieved by removing the jumper and connecting circuit Guard to the LO input terminal. The 3760 does not connect to the 6 common buses on the 3706A backplane. Daisy chaining cards can be achieved by using an output channel.

Specifications

Channels Per Card	10.
Contact Configuration	2 Form A with user selectable shield or driven guard.
Connector Type	Screw terminals, \#16AWG maximum wire size
Relay Drive Current	80 mA per relay typ.
Maximum Switching Levels	$1000 \mathrm{~V}, 0.5 \mathrm{~A}, 10 \mathrm{~W}$.
Maximum Carry Current	1 A DC or RMS.
Contact Life	$>10^{8}$ closures (cold switching), $>10^{6}$ closures (hot switching at $1000 \mathrm{~V}, 1 \mathrm{~mA}$).
Contact Resistance	$<200 \mathrm{~m} \Omega$ initial, $<2 \Omega$ for rated life.
Contact Potential	<35 $\mu \mathrm{V}$ per contact pair.
Actuation Time	<2 ms exclusive of mainframe.
Channel Isolation	$>1010 \Omega,<10 \mathrm{pF}$.
Differential Input Isolation	$>10^{9} \Omega,<10 \mathrm{pF}$.
Common Mode Input Isolation	>109, $<150 \mathrm{pF}$.
Common Mode Voltage	1000 V peak.
EMC	Conforms with European Union Low Voltage Directive.
Operating Environment	0° to $50^{\circ} \mathrm{C}, 70 \%$ relative humidity up to $35^{\circ} \mathrm{C}$.
Storage Environment	-25° to $65^{\circ} \mathrm{C}$.

3765 Hall Effect Card

The 3765 Hall Effect Card is intended for those who want to assemble their own economical Hall test systems. It can also form the foundation of a full Hall Effect system. Used along with the free software, the Keithley Hall Effect Test Suite (KHETS), the 3765 is easily paired with Keithley DMMs, current sources, and ammeters. The card and KHETS software take advantage of the built-in DMM in the 3706A so that an external voltmeter is not required for measurements.

The 3765 is a signal conditioning card designed to buffer test signals from the Hall sample to the measurement instrumentation and to switch current from a source to the Hall sample. When used with Keithley's 3706A mainframe, the 3765 provides the switching capability to measure Hall voltages as low as 50 nV and sample resistances in excess of $10^{12} \Omega$.

All accessories needed to connect the sample holder, scanner, instruments, and controller are included, greatly simplifying connections and reducing setup time. The 3765 is connected directly to the sample, and all instruments are connected via GPIB to the controller. The KHETS software for making resistivity and Hall measurements is available on our website (tek.com/keithley).

The 3765 can be operated in either low resistivity or high resistivity mode. In the high resistivity mode, input impedance is greater than $100 \mathrm{~T} \Omega$, input bias current is less than 50 fA , and output resistance is $10 \mathrm{k} \Omega$. Input voltage ranges in both operating modes is -8 V to +8 V . If higher voltage is desired, Keithley recommends using a 6221/6517B system. Cabling and sample connections must be carefully designed to make full use of the capabilities of the 3765 . Refer to Keithley's Low Level Measurements handbook for guidance in designing these connections.

Specifications

High Resistivity Mode

Input Voltage Operating Range	-8 V to +8 V
Input Impedance	$>100 \mathrm{~T} \Omega$ in parallel with less than 3 pF
Input Bias Current	$<50 \mathrm{fA}$ at $23^{\circ} \mathrm{C}$. Doubles approximately every $10^{\circ} \mathrm{C}$ rise in ambient room temperature.
Input Voltage Noise	$<10 \mu \mathrm{~V} \mathrm{p}-\mathrm{p}, 0.1$ to 10 Hz bandwidth.
Output Resistance	$10 \mathrm{k} \Omega$

Low Resistivity Mode

Input Voltage Operating Range	-8 V to +8 V
Input Impedance	$>10 \mathrm{G} \Omega$ in parallel with less than 420 pF
Input Bias Current	$<100 \mathrm{pA}$
Input Voltage Noise	$<50 \mathrm{nV} \mathrm{p-p,0.1} \mathrm{to} 10 \mathrm{~Hz}$ bandwidth
Input To Output Resistance	$<30 \Omega$

General

Maximum Common Mode Voltage (analog ground to earth ground) 30 V peak, DC to 60 Hz bandwidth
Isolation (analog ground to earth ground)
$>1 \mathrm{G} \Omega$ in parallel with 150 pF
Warm-Up Time
Operating Environment
Storage Environment

A Tektronix Company

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.

[^0]: *Not available in all countries

[^1]: *Not available in all countries

